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INTRODUCTION

In this work we will study the normal embeddings of SL(2)/r over an
algebraically closed field of charcteristic zero, where I is a finite subgroup
of SL(2). By an embedding of SL(2)/I we mean an irreducible algebraic variety
with an action of SL(2) and which contains SL(2)/r as an open orbit. Thus in
particular, it is a three-dimensional variety.

One reason to study embeddings in general is that it gives us a way to
construct varieties. Usually, one constructs varieties either by finding a
subvariety of a known variety, or one glues together several varieties. The
difficulty with the second method is that one must make sure that one glues in
a compatible way; the calculations for this can be quite complicated. If one
is constructing an embedding, however, one can use the open orbit and the
action of the group to simplify this calculation. That is, one can glue
several embeddings together in such a way that they are compatible with the
open orbit.

The study of SL(2)/r-embeddings yields many interesting examples of
three-dimensional algebraic varieties. For example, one can find
non-projective smooth complete algebraic varieties with an action of a finite
group such that the quotient by this action is not algebraic (See [8]).

A theory was developed by Luna and Vust [9] for classifying normal
embeddings of G/H where G is a reductive group with a factorial coordinate
ring and H is an algebraic subgroup of G. The idea has gimilarities to the
classification of torus embeddings (see for example [5]). For torus
embeddings one uses the result that any normal torus embedding is covered by
affine open stable subvarieties [12]. In their case Luna and Vust showed that
any normal G/H-embedding is covered by open affine subvarieties stable by
Borel subgroups of G. One uses this fact to collect data about the local

rings of possible orbits of embeddings. Then one must check which sets of



such local rings form the set of local rings of orbits of a variety. For the
case G=SL(2) and H={e} the calculations are carried out in [9]. Each such
embedding is represented by a diagram which contains data about the set of
local rings of the orbits.

In Chapter I we describe how to extend the calculation to the case
G=SL(2) and H=r, a finite subgroup. We show explicitly how the diagrams of
the data looks for each finite subgroup.

The rest of this work deals with translating questions about geometric
properties of an embedding into numerical conditions on its data. This will
allow us to describe an embedding more fully from its diagram.

For example in Chapter II we calculate for certain cases which embeddings
are smooth. This translates into certain conditions on the data of the
diagram. We carry out completely the calculations for r={e} or {te} and give
partial results for the other cases.

Chapter III is completely independent of the previous two chapters. Here
we consider a Borelysubgroup B of SL(2), and let I be a finite subgroup of B.
Then an embedding of B/r is a rational surface. We restrict to the case of
smooth complete embeddings and then use the theory of smooth rational complete
surfaces to classify these embeddings.

In the Chapter IV, first we describe a geometric method to obtain certain
smooth complete embeddings of SL(2)/r from the embeddings found in Chapter
III. Then we find the diagrams for these embeddings. In doing this we learn
much about the geometry of these embeddings. In the process we learn also how
to blow up certain smooth embeddings. In the last section we give a list of
the "minimal" smooth SL(2)/r-embeddings for r={e} or {te}. By minimal we mean
that they are not obtained by blowing up another smooth embedding at a closed

orbit.

We give now the precise definition for embedding that will be used



throughout this work. Let G be a connected algebraic group and let H be an
algebraic subgroup. Then an embedding of the homogeneous space G/H is a
G-variety X with an equivariant open injective morphism i:G/H <—— X. Two
G/H-embeddings (X,,1i,) and (X,,i,) are considered equivalent if there exists
an equivariant isomorphism ¥:X,-~— X, such that pei,=i,. (That is, an
embedding is considered with a base point: the image of H/H by the
equivariant injective morphism.) When there is no confusion, I denote the

embedding (X,i) simply by X.

This study of SL(2)/r—embeddings partially follows a program proposed by

D. Luna.



CHAPTER I : NORMAL EMBEDDINGS OF SL(2,k)/T

§ 1. Classifying the normal embeddings of SL(2,k)/T

Let k be an algebraically closed field of characteristic
zero. Let G denote SL(2,k) and I a finite subgroup of G. In
this section we will describe the method of [9] for the
special case of classifying the normal embeddings of G/T.
Then in the following sections we will carry out the

calculations.

A normal embedding is characterized by the local rings
of its orbits. So in order to find all the normal embeddings
of G/T, first one must find the set of possible local rings
of orbits. Then one must find which of such local rings can

be combined to form a variety. We denote

L?(G/F) = {local rings of non-open orbits

of normal G/T-embeddings}.
The first step is to describe L?(G/P).
We fix some notation.

We denote by k[G] the ring of regular functions on G
and by k(G) its quotient field. There is an action of G
(resp. ) on k(G) induced by left (resp. right) translation.
We call k(G)r the subfield of k(G) of invariants by right

translation by T'. We denote

V(G/T) = {discrete normalized geometric

valuations of k(G)F over k stable by G}
and v, (G/T) = {veV(E/T) 1Ok, = %)

where kv is the residue field of v and GkV is the subfield
of G-invariants. (We call a valuation '"geometric" if its

valuation ring is the localization of an algebra of finite type.)



Now fix B a Borel subgroup of G. We denote

P = {eigenvectors of B (by left trans-
lation) of k(G)1},
p(I) = (fe P|f is an eigenvector of T (by

right translation)},

and Bp(6/T) = {irreducible divisors of G/T stable

by B}.

Since B is of codimension one in G, BD(G/T) is the set of
B-orbits in G/T. For r = {e}, therefore, BD(G/{e}) = B\G =2
(We write simply E’ for the pro;ectlve 11ne P (k)). So for a
general T', we can identify D(G/F) with P /F

1

Let Dc:Pl/Fbe a cofinite set. We set

A(D) = {fek@) T |f = gh with gekICI,

he "), and vy(h) = 0 v DeD)

where v is the valuation of k(G)F = k(G/T) associated to the
divisor D of G/T.

It is clear that A(D) = A('I\)J)F where D is the inverse
image of D by the morphism P1—>P1/T and

A(D) = {fek(G)|f=gh with g€ kiG], heP, and

V'ﬁ(h) =0v DeTD}.

Also since the group P is generated by PnkI[G], we see that
A(D) is the localization of k[G] by the multiplicative set

{he€PnkLlG] vﬁ(h) = 0, DeT}; in other words, since k[G] 1is
factorial, A(?D) is the ring of regular functions on

G - LJ D; it follows that A(D) is the ring of regular functions
DED
on G/T - |_JD.
DED

Let W = {wl,...,wa}C:V(G/T). We denote



A(D,w) = A(D)f10w1r1...r10wu
where Ow is the valuation ring of we€ V(G/T). Set W equal to
the set of valuations of V(G/{e}) whose restrictions to
k(G/T) (up to normalization) are in W. We will see in
Lemma 1.2.1 that each valuation of V(G/T) can be extended to
a valuation of V(G/{e}). Using this fact, it is easy to see
that A(D,0) = ACD,)T. In (91, it is shown that A(D,W) is an
integrally closed sub-algebra of finite type of k(G); there-
fore A(D,W) is also an integrally closed subalgebra of finite
type of k(G/T).

If the fraction field of A(D,W) is all of k(G/T) and if
vV E Vl(G/F) is positive on A(D,W), then in [9] it is shown that
the localization of A(D,W) by the multiplicative set
S(0,w,v) = A(D, W)IWO* belongs to ki (G/T) (O* denotes the set
of units in O .) Also each element of " (G/F) can be obtained
by this construction (geometrically this means that for any
orbit of an embedding X, there is an affine B-stable open subva-
riety which intersects the crbit. So the 1list of elements of
L% (G/F) is given by the vossible corbinations of Dc PP /P We V(G/T)
and vev (G/P) Since one does not lose any information by
restricting the valuations v for DE D(G/F) and we V(G/T) to
the subgroup P( ) of k(G), we express the conditions for
(D,W,v) in the group of linear forms on P(F)/k* For example,
the condition : "the fraction field of A(D,W) is k(G/T)" i

equivalent to

(W) There exists £€ P nA(D) such that w(£) >0
for all we W;

the condition ”OV contains A(D,W) for VvE Vl(G/P)” is

equivalent to
(V) For a1l feA(,w) nPT), we have v(f) 20

(See [91.)



Now we must decide when two elements % and &' of L?(G/F)
constructed as described above from (?P,W,v) and (D',w',v')
are the same. To do this, note that for L€ L?(G/F),OQ is a

Krull ring, and its essential valuations consist of

(1) a finite subset VQ of V(G/T)

and (2) a subset of the set of essential valuations of k[G/T1.

The set of essential valuations of k[G/T] contains the set of
D€ BD(G/F); we denote BDQ those vy which are essential
for 02.

Now we use the following important fact : Let Dc:BD(G/F)
and We V(G/T); then there is at most one %€ L?(G/F) such that
D, = D and V2= w.

So given the triple (D,W,Vv) satisfying (W) and (V), we
want to find BD2 and Vz where 2= 2(0D,W,v) is the element of
L?(G/F) constructed from (D,W,v). We have for A(D,W)

(a) the v.'s for DeD are essential for A(D,W);

D
(b)lif W = {w} then w is essential for A(D,W);

(b)2 if card W= 2, then all the elements of W are
essential for A(D,Ww) if and only if the following

condition is satisfied :

(W') for all we W, there exists fw€ P(T)rIA(D) such
that

> 0 if wel -{w'}

w(f, ,)
w! =0 if w = W'

Then the essential valuations of OR are the essential valua-
tions of A(D,W) which are zero on the multiplicative set
S(D,Ww,v) = A(D,W)r10;. We denote

pw,v) = nen|PT na@,wynoxcor 1
v VD



then BDQ==D(W,V). As for VQ, the condition '"every we€ W is
essential for %, that is W = Vg'is equivalent to (D,W,v)
satisfies (W') and

W) PP aa@,wynorcor for all weu.

Any 2 € L?(G/F) is constructed from a triple (D,W,v) with
P cofinite in BD(G/F), W finite in V(G/T) and vE€ Vl(G/T).
One can always choose W = VQ. (One cannot always choose
D= BDQ. For example, sometimes BDQ is finite.) So the

technique for classifying L?(G/F) is

(i) classify V(G/T) and Vl(G/F);

(ii) find the triples (D,W,v), D cofinite in BD(G/T),
W finite in V(G/T), and v € Vl(G/F) satisfying

(W), (V), (W) and (V') (then W = Vz(v,w,v));

(iii) for each triple (D,w,v) of (ii), calculate
B -
D(w,v) (then DQ(D,w,v) = D(W,v)).

Once we have described L?(G/F), we must decide which
combinations of localities in L?(G/T) can occur for an

embedding of G/T. Given an embedding X of G/T we denote
L(X) = {2€ L?(G/F)I 2 is a locality in X}

So the question is for which subsets L of L?(G/T) does there
exist an embedding X such that L = L(X).

Now L?(G/F) is a topological space with the topology
of Zariski. For any embedding X of G/T, L(X) is open and
noetherian. Also given an element L€ L?(G/F) we define the
facette of 2 to be

F2 = {ve€ Vl(G/F)I OV dominates 02}.

For any subset Lc:L?(G/T), we say L is separated if the
facettes of the elements in L are disjoint. Certainly for

any embedding X of G/T, L(X) 1is separated, since X is separated.



In fact, one can show given a subset lﬁ:L?(G/T), there is an
embedding X of G/T such that L = L(X) if and only if L is

open, noetherian, and separated [ 91].

Given % = %(D,W,v) such that (0,w,v) satisfies (W), (v,
(W), (V'), we will find FQ. By construction, VE€ Fl' In fact,
one can show that v'E€ Fl if and only if (D,W,v") satisfies

(V) and (V') and P(Ww,v') = DR'

Now we will describe a basis for the topology in L?(G/F).
Given % = &(0D,W,v), the set of localities of A(D,W) in
L0 (G/F) form an open set. Conversely, one can show that given
any open neighborhood U of & there exists a D'c D(B/F)
cofinite such that £ 1is a locality of A(D', 2) and the set of
localities of A(D', Q) is contained in Uj; in other words, the
sets of localities of A(D' 2) for L€ LY (G/F) and such that
o, 2) satisfies (W) and (W') and D::BD form a basis of the
topology in LY (G/F) We can describe thls basis in terms of
D,W and v. leen (D,W,v) which satisfies (W), (V) and (W'),

denote

wo,v) = twew P na@,wnolcor)

Given %€ L (G/T) and DE D(G/F) such that (D,V ) satisfies
(W) and (W') and P> DQ’ denote by L(D,4&) the set of

gte LD (G/T) with the following property : there exists

v' € V (G/P) such that (D, Vg,v ) satisfies (V) and such that
D ( ,v') and V =V (D v'). Then L(D,%) is the set of
1oca11t1es of A(D,V ) in LY (G/T) So finally we have : the
famlly of sets L(D, 2) where (D,V ) satisfies (W) and (W') and
Do D forms a basis of the Zar15k1 topology of L (G/F)

B
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§ 2. Description of V(G/T)

In [ 91 there is a description of V(G) and Vl(G). We
will deduce a similar description of V(G/T) and VI(G/F).

Lemma 1.2.1. The restriction of a valuation in V(G) to the

field k(G)| induces a surjection & : V(G) - V(G/T). (Note

that it could be necessary to renormalize after the restriction.)
Furthermore, VvV € Vl(G) if and only if ¢(v) € Vl(G/T).

Proof.

First we must show that if v € V(G), then v', the restric-
tion of v to k(G)F, is an element of V(G/I) (after renormali-
zation). It is obviously a discrete valuation of k(G)r over k
stable by G. Also, it is geometric because T is finite. (If
OV is a localization of an algebra A of finite type over Kk,
then OV, is a localization of AF, which is of finite type.)

So & is well defined.

To show that ©® is surjective, note that the extension
k(G)FC:k(G) is finite. So if v' € V(G/T), there are a finite
number of valuations over k(G) which extend v'. Since G 1is
connected, they must be stable by G. Let v be one of these
extensions; we will show that v 1is geometric and therefore
in V(G). In general, a discrete valuation of a field K of
transcendence degree n over k is geometric 1if and only if
the transcendence degree of its residue field over k is n-1
[ 9 1. In our case, we have that the extension k(G)thk(G) is
algebraic, and therefore also the extension of the residue
fields kv,c:kV is algebraic. Since v' is geometric, SO is v,
and thus veV(G).

Now we prove the last claim. Let v' = ¢(v). Then

kv,c:kV is an algebraic extension. I claim that the extension

Gkv'c:GkV is also algebraic. For if f¢€ Gkv, let P(x) be the

minimal monic polynomial of f over kv" For any s € G, we apply
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s to the coefficients of the polynomial P. The resulting
polynomial is of the same degree, is monic, and has f as a

root. Therefore it is P; so the coefficients of P are in

G G

kV,; hence f is algebraic over Gkv. Now since kc:GkV‘cz kV
and since k is algebraically closed, we have Gkv, =~ k if and
only if GkV =~ k. This finishes the proof of the lemma.

u

Now we fix a Borel subgroup B of G. Recall that BD(G/F)
is the set of irreducible divisors of G/T stable by B, and
BD(G/I‘)g Pl/F. If D€ BD(G/T), let D denote the inverse image
of D by the canonical morphism G- G/T. For each D€ BD(G/F),
choose gDE k[G] such that gy generates E?? ideal in k[G] of

functions zero on D. Also recall that P is the set of

eigenvectors of B (by left translation) and T (by right

translation) of k(G), and P = P({e}).
(T) "D
Lemma 1.2.2. P = {c [} (gD) c€'k*ﬂH)€Z, almost

DeP~/T
all nD's = 0}.

Proof.

We know the lemma is true for T = {el}; that is,

Ny
P={c ( D' lcek*, n
D'g£1 Ep) D'
Also up to a scalar factor, g, = [1 gp - With this infor-

o

D'eD

€Z, almost all np,'s = 0}.

mation, the lemma is obvious.

Given D€ BD(G/P), we denote

a(D) = number of irreducible components of Dy
_card T |,
m(D) - a(D) ’
_ (D)
and fD = 8

Clearly fDe k[G]P.
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Corollary 1.2.3. Let vy, 5 € V(G/T); suppose that Vl(fD)='v2(f
for all D€ Pl/r; then v, =V,

A% D)

Proof.

We know that if vy and v, coincide on P(F)rwk(G)r, then
they are equal (see [9 1, section 7.4).

Suppose vl(fD) = v (fD) for all De P /F Choose v1 and

VZ extensions of vy and v, to the field k(G). Then since f
is a power of gp, we have Vl(gD) = Vz(gD) for all D€ Pl/r,

()

and v, coincide on p(T) nx(c)T, which implies that v, =Vv,.

so by the lemma , vy and v, coincide on P . Therefore

4

0

So we can describe an element of V€ V(G/T) by the set
of integers {v(f )}DE pl/r* Certainly not all these integers
are positive : if they were, V would be positive on k[G]
Also, as we will see 1n the following proposition, V(f ) 1is
constant for all D€ P /F except perhaps one D for Wthh
v(fD ) =
elemnts of V(G/T) such that if v € V(G/T), v(fD) is almost

v(fD) for all De P /F . Now we renormallze the

always -1 (so v 1s a valuation with values in Q).

Proposition 1.2.4. (a) Given a De P /F and an r € (-1, -11n0

(D)
there exists a unique valuation v(D,r) € V(G/T) defined by

T if D =0D

v(D,T) (f ) = S
o} -1 if D # DO

(b) Vl(G/F) = {v(D,T) ]DGIP /T,r€ (-1, (D) -11nQ} ;
(c) V(G/T) -V (G/F) consists of one element, v( ,-1)
such that v( ,-1)(fD) = -1 for all DelP /F
Proof.

We know the result is true for T = {e} [ 91 . Suppose
Vv € Vl(G/F). Then v = o(v(D',r')) for D'E€ Pl and v' € (-1,11 n Q
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by Lemma 1.2.1. Then V(fD ) = v(D',r‘)(fD ) for all DOE Pl/F.
o) o

Now

m(D) (1-a(D )+r') if D'efﬁo

v(D',r") (fy ) = N
o) -card T if D'¢DO.
We renormalize v = (v(D',r')) to get
]
1*T° _ 1 for one special D¢ Pl/F
_ a(D)
v(fD ) =
° -1 for all other elements

of Pl/F.

1
Let r = %%%T-l. Then v=v(D,r). This proves (a) and (b)

(using Lemma 1.2.1 and Corollary 1.2.3).

Also V(G/T) - Vl(G/F) = {o(v( ,-1))} = {v( ,-1)}.
This finishes the proof of the Lemma.

For each D€ Pl/P , we denote b (D)

I

The finite subgroups of SL(2,k) are well known. Each
such group is conjugate to one of the following : Cn, the
cyclic group of order n, nE:If-; ﬁn’ the binary dihedral
group of order 4n, n 22 T, the binary tetrahedral group of
order 24; @, the binary octohedral group of order 48; or I,
the binary icosahedral group of order 120 (see for example

[131).

We will now describe V(G/T) for each of these cases.

For this we must study how T acts on BD(G) = Pl.

(a:b) € P* and o fy eresLiz,L,

Given

(a:b) (‘;‘ g) = (aa+by: ap+bs)
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Since (}} fa) acts trivially on Eﬂ', it is enough to study
the action of T, the image of T under the canonical morphism
SL(2,k) »PGL(2,k). One can view Pl as the Riemann sphere and

T as a group of rotations (if k = C€).
(1) T is conjugate to Cn'
(a) n odd

There are two elements D1 and D2 of Pl fixed, and each
other orbit is of order n. So for each DCdplﬂ‘either D= Dl
or ﬁ==D2,
in which case a(D) =n. So the diagram of V(G/T) looks 1like

1

in which case a(D) = 1, or D consists of n elements,

SR
]
o

where b =

-1 1

Each branch represents a point of Pl/r ; the two long
branches correspond to Dy and D, The valuation v(D,r) 1is

represented by the point T on the branch corresponding to D.

(b) n even
Here again two elements of Pl are fixed, but each other

orbit is of order %. So the diagram of V(G/T) looks like

where b =

SRES
]
—
-

1

For all the remaining cases, T contains the element
(}} fa). So the order of T is half the order of I'. Also the
group T is the group of rotations of the corresponding poly-

hedron. The vertices of the polyhedron form one orbit, the
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centers of the edges form another, and the centers of the
faces form a third. Each other orbit is of the order of the
group T. So in general, there are three "special'" elements
of Pl/r 1, DZ’ D3 with a(D ) = number of vertices of the
polyhedron, a(D ) = number of edges, and a(D ) = number of

faces. For the other elements D of P /P a(D) = order of T.
(2) T is conjugate to ﬁn’

Then T is of order 2n, and the dihedron has 2 vertices,

n edges and n faces. So the diagram of V(G/T) looks 1like

"
(@]
-

where b1

_ = 2 .
b= 0 by = b3 =yn-1s

and b = 1_ 1
n

(3) T is conjugate to 1 .

Then T is of order 12, and the tetrahedron has 4 vertices,

6 edges, and 4 faces. So the diagram of V(G/T) looks like

- =2_q7-_-1.
where bl--b3--4 1 5
2.5, -8
b,=5-1 3
= )2 _ B
and b =13 1 = 6

(4) T is conjugate to @

Then the order of T is 24, and the octahedron has
6 vertices, 12 edges, and 8 faces. So the diagram of V(G/T)
looks like
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where b1=—§‘)--1 = —% :
by=gg-1=-%
bf%'l:'% ’
and b =-§Z- 1=-%l

(5) T is conjugate to I .

Then the order of T is 60, and the icosahedron has
12 vertices, 30 edges, and 20 faces. So the diagram of V(G/T)
looks like

-2 - .2 .

where bl— 12 1= e >
2 _y=_1%

b,=35g~ 1135 °
2 1.9

bs'zo 1 10 °

i b 2 29
gt %0 1730

§ 3. Description of L?(G/F)

Now we are ready to classify L?(G/F). The description
one finds for L?(G/r) is very similar to the one given in [ 9]

for T = {e}.

Recall that each element 2 € L?(G/F) is the locality
L(0,W,v) for some Dc>D(G/T) cofinite, WcV(G/T) finite and
vV € Vl(G/F) such that (D,W,v) satisfies (W), (V), (W') and (v").
Furthermore, if (D',W',v') satisfies these conditions also,
tnen L(D,W,v) = &(P',w',v') if and only if W=W' and
D{W,v) = D' (W ,v').

First we state a proposition which describes the triples
(0,w,v) satisfying (W), (V),(W') and (V'). Then later we will

find P (W,v) for each case.
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Proposition 1.3.1. Let D be a cofinite subset of Pl/r,

W = {wl,...,wa}CV(G/P) with Wj = V(Dj,rj), j =1,...,a, and
Vv € Vl(G/F). Then (D,W,v) satisfies (W), V), (W) and (V')
if and only if it is one of the following types

Type Aa (a21)
1 il
D =P /T"{Dl""’Da} and Di#ZDj if 1#3; ].<Ij sb(Dj)
a 1 o
and | o7 <1 3; VE LJ v(D,1-1,b(D)]1) v LJ v(D.,Jl-1,r.[).
j=1 % DED =1 )

Type AB (a = 2)

1 . _
IH_ED and D # E’/F-{Dl}, D, = D, and
-l < rzsb(Dl); VEV(Dl, ]rl,rz[).
1
IH_ED z2IP /Ty -1< rl<'b(Dl);vev(Dl,]rl,b(Dl)]).

Type B_ (a=1)

1
D =P /F-{Dl}; 0<r, < b(Dl);vev(Dl,Jrl,b(Dl)J)-

Type B0 (a=1)

1
D =Pl/r; 0<r, <b(D));vev(D,,1r),b(D) ).

=
n

{v}.

Proof.

The proof is practically jdentical to the proof given
in [ 91 for the special case of T = {e}, so we will not

give the details here.
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To give one example of how to proceed, we will show

if (p,w,v) is of type Aa’ then the conditions given are

verified. We check the four conditions

(W)

W')

Case 1 : Either a =23 or T, < 1, 1 =1,...,qa.

Then consider the function F = (f; ...f Clearly,

)
Dl Du
Fe A(D);, also wi(F) = a—l-ri> 0, i=1,...,a; so the

condition (W) is verified.

Case 2 : o = 2 and ry = 1.

In this case r, <1, since (r1+1)_14-(r2+1)-1< 1. Choose
positive integers n, and n, such that r2<:n1n£1< 1;
consider the function F = fB?lfBZZ. Again F€ A(D); also
wl(F) = n,-TN; T n,-ny >0 and wZ(F) = nq-Ton, >0; so
the condition (W) is verified.

If o = 1, then ry <0, since (r1+1)_1< 1; so this case is

already covered in Case 1.

Case 1 : There exists an 1. = 1.

L = ~4i ~Pj = _1
For each i=j, let fwi (fDi) (fD.) 1, where T,

+
piEZZ and qiE]N ; then

Wi(fwi) = -q;T;*P; = 03
wJ(fwi) = -pirj+qi= qi(l—rirj)> 0 since rjx 1;
wk(fwi) = q;*p; qi(1+ri) >0 for k#1 and k=j.

Fix one io¢ j between 1 and a, and let

= - a5 -Dj. :
fw. (fD.) J(fDi ) ¥J; then one finds also
J J o
=0 if k = 3j
w (£, )
k2w >0 if Kk # j

Clearly, fw is in A(D), k = 1,...,a; so the condition
k

(W') 1is verified.
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Case 2 : a =3 and Ty S eee S Be = 1.
-2 -1 -1 -2 -1 -

Let £ = (£,) “(f,) " (£,) 7, £ =) "(fy ) “(fp )

Wy D, D2 D3 L D2 D1 D3
and for 123, let £ = (£ ) 2, ) 1(£y )7t it is easy

W, Di D1 D2

to verify that these fw 's verify the property given in
W'). '

(V) and (V'). That these two conditions are verified 1s a

direct consequence of the Lemma of section 9.3 [91.

Proposition 1.3.2. Suppose (D,W,v) 1is of type Aa (resp.
AB,B+,B_,BO); then B = Pl/F-{Dl,...,Da} (resp. ¢,
{D,}, Pl/r—{Dl},Pl

Po,w,v)
).

Proof.

From section 1, we know it is enough to show that
D(W,v) is as stated above for each type. This can be easily

verified.
O

Let 2 € L?(G/F). We define the type of & to be the type
of (D,W,v) such that & = 2(0,W,v). One can read off the
facette of & from Proposition 1.3.1 : from section 1 we know
given & = £(DP,W,v) of one of the types above, v'E¢€ FQ if and
only if 2 = 2(D,W,v").

For each %€ LT(G/F) we draw a diagram which represents

2 as follows
(1) Darken the facette of £ in the diagram of V(G/T);

(2) Since the facettes of elements of types B,, B_ and
BO are the same, we distinguish the three cases by labelling

the facette with a sign "+", "-" or "o".

il

’
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For example, if I' is cyclic, the diagrams of the elements

of L?(G/F) are as follows

Ay

g

e A

E

- + 5
? oy /
— &
-4 X




-2]1-

or

h-i t _1
Note that for & = 2(?D,W,v) of type B_ or B with

w = {v(D,r)}, since r>0, it is necessary that b(D) = 1;

. . . . 1 .
that is, the inverse image of D in IP" contains one element.

§ 4. The normal embeddings

We say that Lc:L?(G/F) is a normal embedding if there
exists a normal embedding X such that the set of localities
of the non-open orbits of X, which we denote earlier as
L(X), is equal to L. Using the remarks of section 1, we find
which subsets of L?(G/T) are normal embeddings. Again, the
result is just like the result for the case T = {el given

in [ 9 1J.

First note that the type C localities in L?(G/F) are
exactly the valuations of Vl(G/F); so it makes sense to say
that Vl(G/F) is contained in L?(G/F). (This means that the
elements of type C are the localities of orbits of codimen-

sion one.)

We denote

L'(G/T) = {2€ L’ll(G/r)lz is of type B, and

V2 = {v( ,-1)}}.
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Proposition 1.4.1. Let L be a subset of L?(G/P). Then L is

a normal embedding if and only if 1t satisfies the following

properties

(i) if g2€L, then Vz” Vl(G/F)cL;

(ii) if 2€L and v( ,-1) € Vz, then L contains a subset
cofinite in L' (G/T);

(iii) L - L'(G/T) is finite;

(iv) the facettes of the elements in L are disjoint.

To prove the proposition, one shows that "L 1s open
in L (G/T)" is equivalent to (i) and (ii), "L is noetherian”
is equlvalent to (iii), and, as we already know from section 1,
", is separated" is equivalent to (iv). The proof is completely
straightforward : the basis of L?(G/T) is given in section 1,

and one uses Proposition 1.3.1 to find the open sets.

So instead of explicitly giving this proof, we will
indicate the validity of the proposition by studying the

geometrical structure of embeddings.

Let X be a normal embedding of G/T and L = L(X). Then
certainly L satisfies (i). Also, since X-G/T has a finite
number of components, X can have only a finite number of
orbits of codimension one; in other words, L has only a
finite number of type C localities; this fact together with
property (i) implies property (iii). As for property (ii),
suppose L€ L with v = v( ,-1) € VQ; then X-G/T contains a
component whose local ring is Ov' Let Xl be the open subvariety
of X obtained by removing all the other components of X-G/T.
Then Xj is an embedding of G/T, and L(X; e L'(G/T). To see
that L(X ) is cofinite in L'(G/T), note that X1 contains
Spec A(D,{v}) for some D cofinite in P /P then it contains
every element £ of Ll(G/F) such that D c?D; this set 1is

cofinite. Another more constructive way to see the cofiniteness
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of L(X ) is to exhibit the embedding Y(T) such that

L(Y(T)) = L'(G/T). Then Y(T) - G/T is irreducible, and we will
see that all its orbits are isomorphic toiPl. Now Xl -G/T

is a G-stable nonempty open subvariety of Y(T)-G/T, so

Y(F)—Xl is the union of a finite number of orbits.

One can construct Y(T) as follows. First we construct
Y({e}). Let M(2) denote the vector space of 2x 2 matrices
with coefficients in k. Let Y({el}) be the closed subvariety
of P(M(2)8k) defined by the equation det(A)- t = 0 where A
is in M(2) and t is the coordinate on K. Now G acts on Y({el})
by multiplication on M(2), and there is an obvious equivariant
inclusion of G into Y({e}) defining an embedding. It is not
difficult to see that L(Y{e}) = L'(G/T) [ 91. Also, Y({e})
is a GxG variety where the second G acts by multiplication on
the right of M(2); therefore, for any subgroup T of G, T acts
(by right multiplication) on Y({e}). In fact it is not hard
to show that for T a finite subgroup of G, the quotient
Y({e})/T exists and is equal to Y(F) One can show that
Y(T)-G/T is isomorphic to Pl x IP /F and each orbit is of the
form Plx{a}, ac€ Pl/T.

To show the converse, first note the following

(a) if L€ LIll(G/I‘) and v( ,-1) € V,, then there exists
an embedding X such that L(X) = 2V Vl,

(b) if € L0 (G/F) and v( ,-1) € V then there exists
an embeddlng X such that L(X)c:zu V UL (G/T).

For both (a) and (b), let Xo be any normal embedding such
that Q€ L(X ). By removing the irreducible components of
X -G/T with local rings not in Vz, we can suppose that the
only valuations in L(Xo) are those 1in V In other words,
suppose Y is the orbit of XO with locality 2; then every
orbit of dimension two of X, contains Y in its closure. As
for the orbits of dimension zero or one, they are always

closed : any orbit of dimension one 1s isomorphic to Pl
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Since L(Xo) satisfies property (iii), Xj contains a finite
number of orbits of dimension zero or one not equal to Y
whose localities are not in L'(G/T); set X equal to the
open subvariety of Xo obtained by removing those orbits. It
is clear that X satisfies (a) or (b) depending on whether

v( ,-1) € Vﬂ or not.

Now suppose Lc:L?(G/F) satisfies properties (i)-(iv).
For each 2 €L, construct a variety XQ as follows : if
v( ,-1) € VQ,
v( ,-1) € VQ, then XQ is a variety which satisfies the

then X2 is the variety defined in (a); if

condition in (b) and such that L(XQ)C:L (this is possible by
condition (ii)). Let Z be the subvariety of Y(T) such that

L(Z) = L'(G/T)NL (again this is possible by condition (ii)).
Now glue these varieties together by identifying orbits

with the same locality; this gives us a variety, X (it is
separated by condition (iv) and noetherian by condition (iii));

clearly L(X) = L.

For each normal embedding L, we can draw a diagram by
combining the diagrams of all the 2 €L on one copy of V(G/T).
For example, if T = {e} the following are examples of

diagrams of embeddings

(this embedding has 6 orbits);

(this embedding has 5 orbits);

(this embedding has an infinite

of orbits).
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The following is not an embedding

For T = W' the following are examples of embeddings

<+
1 (this embedding has 4 orbits);
-1 ' (this embedding has 3 orbits);

(this embedding has 5 orbits).
-1 3

Note that in this case there are no orbits of type B_ or B
because b(D) < 0 for all D.
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CHAPTER II : SMOOTH EMBEDDINGS OF SL(2)/T

In Chapter I, the normal embeddings of G/T are classi-
fied. In this chapter, we will show how to calculate which
of these embeddings are smooth. If X is a normal embedding,
then the set of singular points of X, SingX, is stable by G.
So each orbit of G in X is either entirely contained in
Sing X or entirely contained in RegX = X - Sing X. Certainly,
any orbit of codimension one is contained in Reg X, since X
is normal. Also, if x€ X is a fixed point, Popov [10] showed
that x is always singular. (The argument goes as follows.
First note that x is contained in an affine open neighbor-
hood, U, which is stable by G. Then the etale slice theorem
of Luna [ 7 ] shows that if x were smooth, U must be a three-
dimensional vector space, and the action of G must be linear.
It can easily be shown that this 1is not the case, so x 1is
not smooth.) It now remains to check to orbits of dimension

one.

In the first section, we will state and prove some
Lemmas. Then we will carry out the calculations completely
for T = {e} and T = Z/2Z. Afterwards we will calculate some

other examples for different I's.

§ 1. Methods to calculate the smooth embeddings

We denote
S(G/T) ={%€ Lrll(G/l")IO2 is a regular local ring}.

We want to know which elements of L?(G/F) are in S(G/T).
Then an embedding X of G/T is smooth if and only if the loca-
lities of all its orbits are in S(G/T).
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Lemma 2.1.1.

(a) Suppose L€ L?(G/P) is of type BO; then 2 ¢ S(G/T).

(b) Suppose L€ L?(G/P) is of type C; then %€ S(G/T).

Proof.

The orbit associated to an element of type B0 is a
fixed point. As remarked at the beginning of this chapter,

fixed points are always singular.

The orbit associated to an element of type C is of

dimension two, and it is therefore smooth.
0

All the other types of elements of L?(G/T) correspond
to one-dimensional orbits. For any QEZL?(G/F), 02 is a local
ring of a variety of dimension three. The following lemma
will associate to each & not of type B0 or C a local ring
of a two-dimensional variety such that OQ is regular if and

only if the associated ring is regular.

As in Chapter I, B is a fixed Borel subgroup of G.
We denote by U the unipotent radical of B. For %€ L?(G/F)
we construct a corresponding A(D W) as described in
Chapter I. Since B, and therefore also U, act on A(D,W),
it makes sense to consider UA(D,W), the fixed elements of
A(D,w) under the action of U. In [ 91, it is shown that
Ur(D,w) is of finite type.

Lemma 2.1.2. Suppose L€ L?(G/F) and % is the locality of a

one-dimensional orbit. Then A(D,W) is locally isomorphic to
k[U]@kUA(D,%) in a neighborhood of m2f1A(D,W) and
k[U]@k[m£r1 A(D,W) 1.

Proof.

Let X be an embedding of G/T with orbit Y such that

0 = 0 . Since Y is of dimension one, it is isomorphic to Pl.

X,y L
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Pick a point x € Y such that the stabilizer of x is not B.
In [ 3], it is shown that there exists an open B-stable
affine nelghborhood V of X such that V £ U x U\V; that is,
k[V] £ klUl @ k[V] Let y be the image of VAY in the
projection V-U\V.

Let W = Spec A(D,W). Then it makes sense to define a
variety U\W = Spec UA(D,W), since UA(D;w) is of finite type.
Let z_ be the image of YNW by the projection W-aU\W.

To prove the Lemma, we show that OU\V,y = OU\w,zo'

By replacing V by WNV, we can suppose that Ve W. Then
since V is B-stable, W-V is a union of closures of divisors

in D-D . We set

W-V [_] D where D €D - Dl’ i=1,...,n. Since
i=1

D. GDQ we know from Chapter I section 1 that there exists

g; €A(D ru)nP(r)nO* such that vp (g y>0, i=1,...,n. Set

g = [:1 8y Clearly, oU\W,zo OU\V,y since k[W]c Ykrva.

f
] _1 1 U
Now suppose fc OU\V,y' Then £ fz with fl,fze k{V] and

+ N N _U N
fzﬁml; so for some NE€N flg ,fzg € k(W] and also fzg ¢m£

: . s £1 flgN 0 o
since neither fz nor g is in m,; so ¥ = ——ﬁe U\W,z his
2 fzg 0

proves the Lemma.

From now on, we denote Z(D,W) = Spec UA(D,(u), and Z,

is the point of Z(D,Ww) with local ring U02. This Lemma

shows in particular that %€ S(G/T) if and only if z_1s a
smooth point of Z(D,W); that is, 2 € S(G/T) if and only if

U_Ol is a regular local ring.

One way to show that a certain UOQ is regular is to
find two elements that generate mpanA(D,w). The following
Lemma deals with the generators of this ideal. As defined
earlier, P(r) is the set of eigenvectors of B (by left

translation) and of I' (by right translation).
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Lemma 2.1.3. Let L€ L?(G/P), and let D be a cofinite subset
of 50(G/T) and wa finite subset of V(G/T) such that 0, is
a localization of A(D,w). Then the ideal mQIWUA(D,w) is
generated by mzrlUA(D,W)rlP(r).

Proof.

Fix a torus Tc B. Then P(r) contains the set of eigen-
vectors of T in Uk(G)F. Since UA(D,w)c:A(D,w) is a rational
T-module, it is generated by the eigenvectors of T. The
ideal m IWUA(D,W) is a T-stable ideal, so it is also gene-

L
rated by eigenvectors of T.

i

Another method we shall use is that in many cases UOQ

is not factorial and is therefore not regular (see e.g. [15]).

For any integral domain R, we say that a€R is extremal
in R if it has no proper divisor in R : that is, if a = bc
with b,c € R, then either b or c is a unit. If S is a multi-

plicative submonoid of R, we say that a is extremal in S

if it has no proper divisors in S : that is, if a = bc with
CER, b€S and such that b is not a unit, then ¢ is a unit

in R (note that ¢ need not be in S).

A noetherian domain R is factorial if and only if every
extremal element of R is prime (we say a € R is prime if the

jdeal generated by a in R is prime).

The following Lemma will give us a method to prove

that certain elements of UOQ are extremal.

Lemma 2.1.4. Suppose X is a reduced irreducible affine

variety on which a torus T acts rationally, and Y 1is a
closed irreducible T-stable subvariety of X. Suppose also

that Ox " is integrally closed. Denote by P the set of
b
eigenvectors of T in k(X). Let fe OX ynP; then f is
b

extremal in 0O NP if and only if it is extremal in 0 .
X,Y X,y
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Proof.

Obviously, if f is extremal in 0X y? it is extremal in

0 _nPp. ’
X,y

Now suppose f is extremal in 0X yf\P. Let
b

f=g,°g with g8, €0 .
1 2 1’22 7 "x,y

We will show that either g, or g, is a unit. We can suppose
gle'k[X]. The plan is to replace g, by an element of P.
First we prove

*
1 X,y'
Proof of claim : Since OX y is integrally closed, it is a

3
Krull ring; we divide its essential valuations into two

Claim : If t€T, then t g, = ug; where u€ 0

categories : those stable by T and those not stable by T.
If w' is an essential valuation not stable by T, then
0 =w'(f) = w'(gl) + w'(gz); since g, and g, are in ox,y’
we must have w'(gl) = (0. Since (t-gl)(t-gz) = t«f = X(t)f

where X is a character of T, we have similarly w'(tgl) = 0.
If w is a valuation stable by T, then w(t-gl) = (t-lw)(g1)=
w(gl). So for all essential valuations of Ox,y’ the element
(t-gl)gi1 = u is a unit; therefore u€ 0; v and the claim

’
is proven.

The claim shows that the ideal glox’y is stable by T.
Now consider the ideal I = glox,yr1k[X] of k[X]. It is stable
by T, so it is generated by elements of P. Suppose
hl""’hr€ INP generate I. Then there exist aiE Ox such

that g,3; = hi’ i=1,...,r. Also g1€ I; so there exist

T

biE'k[X], i=1,...,r such that g = ) bihi' We substitute
T i=1 T

g13; for h,, and we find g, = (121 biai)gl; SO 121 biai = 1.

The a.'s and b.'s are all elements of 0 . So for at least
1 1 X,Y

one i, a, € O; y? because otherwise 1 would be in the maximal

. ’ -1, % -1
ideal of OX v Then a,” € Ox,y and g, = a, hy, h; € PﬂOX

’ ’



==

Suppose g; is not a unit in Ox ; then h.1 is also not

. : _ _ -1 ! ;
a unit. Since f = 218, hl(ai gz) is extfgmal in Ox’y{\P
and hi€ Ox, NP and is not a unit, then a; 326 Ox,y; since

* * . . .
a, € ox,y’ we have g, € Ox,y' This finishes the proof of the

lemma. 0

Now for a given finite subgroup T of G, we find S(G/T)
using the following facts

(1) If % is of type C, R € S(G/T).
(2) If & is of type Bo’ L€ S(G/T). (Lemma 2.1.1)
(3) If 2 is of another type

(1) 02 is regular if and only if UOQ is regular
(Lemma 2.1.2);
(ii) ifUO2 is not factorial, then it is not regular;
and (iii) if mQIWUA(D,uD is generated by two elements,

then UOR is regular.

We use Lemma 2.1.3 to find generators of mQrIUA(D,W), and
we apply Lemma 2.1.4 to the case X = Z(P, W, Y = z, to show

that certain UOQ'S are not factorial.
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There are two other methods of calculation which can
be very useful for certain finite subgroups I'. First we
will state a lemma which relates part of the calculation of
S(G/Fz) to that of S(G/Fl), where T is a normal subgroup
of FZ. Then we will state a lemma which, when T is cyclic,

shows that often we can use the theory of torus embeddings.

Lemma 2.1.5. Suppose Tl and Tz are finite subgroups of G,

and Fl is normal in Fz of index s. Let RE€ L?(G/PZ) be such
that there exist s distinct elements zl,...;ESE L?(G/Fl)
with Of. a localization of the integral closure of OQ in
k(G/Fl)lfor i =1,...,5. Then 2€8(G/T ) if and only if
zie S(G/Fl) for any i.

Proof.

Choose (D,W) satisfying (W) and (W') such that 02 is
a localization of A = A(D,W). Let A be the integral closure
of A in k(G/Fl). Since A is of finite type, so is X. Also

Or ,...,0~ are localizations of X such that O~ nk(G/T,)=0,.
ILl SLS Jli 2 2
Now the inclusion Ac A induces a finite ramified covering

of s leaves of Spec A - Spec A. Now OQ is the localization
of a subvariety Y of Spec A, and ozl,...,ozs are localiza-
tions of subvarieties of Spec A which lie over Y. So this
finite covering is unramified over Y, and the lemma is

proven.

O

For the next lemma, let T be a cyclic group. Then fix
D1 and DZ’ two distinct elements of BD(G/P) such that
b(Di) =1, i=1,2 (so if T is of order 1 or Z, then D1
and D2 are any two divisors, and if the order of T 1is
greater than 2, then D1 and D, are the two divisors fixed
by the action of T). Suppose L€ L?(G/F) is the locality
of a one-dimensional orbit. We construct Z(D,w) as described
earlier. Let S be the torus with coordinate ring

U 1 e[l -1
A(P /T-1{D,,D,}) = k[f, ,£. ,8y 8&p »(8p &p ) ~1.
1°°2 D,’"D,*®D; °D,’"*D,"D,
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Lemma 2.1.6. Suppose D:>P1/F - {Dl,DZ} and wcz{wl,wz} with
wy = V(Dl,rl) and W, = V(Di,rz), i=1 or 2; then Z(D,W) is
an embedding of the torus S. Furthermore, if there exists a
v € Vl(G/P) such that 0V dominates 02 and V='V(Di,r), r>-1
and i = 1 or 2, then the point of Z(D,W) fixed by S is 2,

(For a reference of torus embeddings see [ 51.)

Proof.

It is clear that VA(D, ) ck[S1 = VA(P'/T - {D,D,});
also the quotient field of UA(D,UD is the same as the
quotient field of k[S]. To show that Z(D,W) is an S-embedding,
it remains to show that UA(D,UD is stable by the action of S.
We know that UA(D,w) is generated by UA(D,W)(\P(F). Suppose
fe:UA(D,w)rmP(F); then f is of the form

n n

il n.
f=c¢cf (g 8 )
D, *°D,°D,

i
(f, +a.fy ) ’
3 D1 1 D2

2

1B

c,a. € k*
i

1 i

(To see this, note that for D=D, i = 1,2, [l gpy is of

the form £, +a f. , a€k*.) YEr
D D
1 2
Now if s €S, then
ny n, m n,
s+«f =c¢c" £f.7(g8n &n ) [1(E, +bf ) c,b. € k*.
D, “tp, *p, s Dy @Dy B R

By choice of Wq and Wo s wi(s-f)==wi(f) for i=1,2; also
vy (£) = vy (s+f), i=1,2; so Un(p,w) is stable, and Z(D,W)
i i

is a torus embedding.

Also, for v = v(Di,r) i=1or 2, v(f) = v(s+f). So
the ideal mvr1UA(D,w) is stable by the action of the torus.

If OV dominates 02, this is the maximal ideal of the point z, .

O
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One has only to check the list in Chapter I of the
types of elements of L?(G/F) to see when Lemma 2.1.6 is
applicable. For types AB, B, B_, A1 and A2 when
We {V(Dl,rl), V(Di,rz)}, ij=1 or 2, one can choose D such
that Z(D,W) is a torus embedding. Also, using the second
part of Lemma 2.1.6, one can show that the fixed point of

Z(D,W) 1is Z,-

§ 2. Case of T = {e}.

For this case, we will calculate S(G) = S(G/{e}).
Remember that BD(G) = Iﬂ', and b(D) = 1 for all DE:BD(G).
That is, in the diagram of V(G), all of the rays have the

same length.

Proposition 2.2.1. Let &€ L?(G); then 2 € S(G) if and only
if it is one of the following types

1a) Type A, with r; = - ¢, q€ N

1
q
1b) Type A, with r, = r, =0

2 1 2
or with Ty = 1l and . = ﬂél, qc€ N A
2) Type AB with r. = L and |r,-r,] = de
gt 1 72 q-.9-,
1 172
3) Type B, with ry = 0 or -1 ;
. 1 +
4) Type B_ with ry = 3’ geE N

5) Type C.

(We make the conventon that if we write 1 = %, we choose

q>0 and p,q€Z and relatively prime.)

To prove this proposition, we will use the lemmas of

the previous section.
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Proof.

First of all, if & is of type C, then 2€ S(G) by
Lemma 2.1.1(b). If ¢ is of type B, then 2 € S(G) by
Lemma 2.1.1(a).

In all the other cases, & is the locality of an orbit
of dimension one. We will divide the proof for these cases
into two parts. First we will consider the types where we
can apply Lemma 2.1.6 and use the theory of torus embeddings.

Then later we will treat the other types.

Case 1 : % is of type AB, B_, B_, A1 or Az.

One has only to check the list of L?(G) given in
Chapter I to see that for the types listed above, the
Lemma 2.1.6 applies. That is, one can choose DC:PI- {Dl,DZ}
with D, # D, such that wc:{wl,wz} with w1==v(D1,r1) and
w2='v(Di,r2) for i=1 or 2. Recall that we denote Z(D,W) =
Spec UA(D,w). By Lemmas 2.1.2 and 2.1.6, £€S(G) if and only

if Z(P,w) is a smooth torus embedding.

Now we will review some facts about torus embeddings
which will allow us to calculate for which & the corresponding
Z(D,W) is smooth.

We call the two-dimensional torus for which Z(D,W) 1is an

embedding S. We denote

X(S) = {characters of S} £ Zz

and X, (S)= {one-parameter subgroups of S = ZZ.

Then X(S) and X,(S) are dual. The vector space of linear
functionals on X(S) is identified with X*(S)QZ]R.Let o be
the sector of X*(S)QZ]Rof linear functionals on X(S) which
are positive on X(S)fWUA(D,W). Then o is generated over R

by two primitive vectors, e,,€, €X,(S).
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The theory tells us that the following conditions are

equivalent

(i) Z(P,w) is smooth (and in fact = Ai);
(ii) Z(P,w) is smooth at the fixed point;
(iii) {el,ez} forms a basis of X,(S) over Z;

(iv) det(e1 e2) = 1,

(See [51.)

The first step is to calculate the characters of the

torus S. The ring of regular functions of S is given by

Upn(pl-(p.,p.3) = kO£, ,E.1,6 €211, So X(S) =
1°02 p.*fp »fp »tp
my m, 1 1 2 2

{fD1 fDZ m,,m, €2},

Now for each type we must choose an appropriate D,
then we find e and e, and calculate the determinant. Then

by the above remarks, we will know when 2 € S(G).

Type AB. Let Wy = V(Dl,rl) and W, = V(Dl,rz) with

Pi . 1
<r2s1, r, = —CE, i=1,2. We must choose D& P —{Dl}.

L {Dl,DZ} for an arbitrary D, € PL. Now

if f is a character of S, then fEZUA(D), so feUA(D,w if
and only if wi(f) >0, i=1,2. So X(S)r]UA(D,W) =
m. ™
{f f | myr. -m, 20 i=1,2}. Then if o is the sector
D1 D2 171 2
of linear functionals positive on X(S)r\UA(D,W), then o is

-1 < rl

So we choose D= P

<+
generated over R by e, = (pl,-ql) and e, = (pz,-qz). Then

P Py : .
det(e1 ez) = det(_ql _qz) = -p1q2-+p2ql. So if & is of
type AB, then 2 € S(G) if and only if |p2ql-p1q2|= 1, or in

_ -1
other words, r,-ry = (qlqz)



= S~

P
_ _ 71
Type B,. Let wy = V(Dl,rl), -lsry = a;< 1. We must choose

D= EJ'with Dl€'D. So let D= Pl-{Dz} for an arbitrary DZ'

.o Mu
f € "A(D) if and only if m = 0, and it

1

belongs to UA(D,W) if and only if my =0 and wy(fp

A character fD

m m
1fD )

. 1 2

1

m
U 2
mT) - M, 2 0. So X(S)n A(D,W)=-[fD1 sz | my 2 0 and

mlrl-lnzz 0}. If o is the sector of linear functionals
positive on X(S)r\UA(D,W), then o is generated by e, = (1,0)

1 P
and e, = (pl,—ql). Then det(e1 ez) = det(0 -q,
qq = 1 if and only if T = 0 or -1. So if & is of type B+, then
2€S(G) if and only if ry = 0 or -1.

) = “qq- Now

Type B.. Let wy = V(Dl,rl), 0 < ry = a—< 1. We must choose

D=IP1- {Dl}. Pick an arbitrary DZEZD. A character

m m, gy
f € “A(D,W) if and only if it belongs to A(D) and

) = mlrl—mzz 0. So X(S)r1UA(D,W)= {fD f

1 2 1 2

m, z 0 and myr -m, = 0}. In this case, o is generated by

0 p
_ _ _ = 1
1" (0,1) and e, = (pl, ql). Then det(e1 ez) det(1 _ql)

c

= -Py- Since ry> 0, we always have Py > 0. So the locality
of the orbit is smooth if and only if Py = 1, in other
words, T, = qil. So if & is of type B_, then 2 € S(G) if and

) =l +
only if ry = 4d; q1€ N .

P

- 1 - = __1
Type Al' Let Wy = v(Dl,rl) with -1< T, ql< 0. We must
choose D = Pl-{Dl}. As in type B_, choose any DZEID. Again
m m
1

x(s) nYa(o,W) = (£, “f 2 |my>0 and myr -m,0}. So again

1T17™2 7
1 2
we find det(e1 ez) = -Py>» but this time Py is negative.
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Now p; = -1 signifies that r) = -qil
-1

So if £ is of type Al’
then € $(G) if and only if r; = -aj , qle:m+.

P

= = i - =_1.

Type AZ' Let Wy V(Dl’rl)’ LE V(Dz,rz) with -1 < ry qis 1,
i=1,2, such that either ry or r, is not equal to 1. We must

choose D = Pl- {D Dz}. In this case, X(S)r1UA(D,W) =

H

fine B2 g ¢ '
{fD1 £, |r1m1-n% >0 and —m1-+r2m22.0}. So 0 is generated
be e, = pl,—ql) and e, = (-qz,pz); then det(e1 e2)

pl _qz Jh
det(_ql pz) = PP, - 474, < 0. We check the conditions for
9,4, - P1P, to be equal to one. Since ri>-1, we have p;*q; > 0.
If q;9,-pyp, =1, we have 1 = q;q,-pP1P, > -p,(a,+p,), so py = 0.
Now 1 = qlqz'plpz - (ql_pl)q2+ (q2_p2)p1 if and only if

(1) ql = pl =1 and qz_pz =1
or (ii) q, = Py = 1 and q-Py = 1
or (iii) Py = 0 and q, = le

This gives exactly what was stated in the proposition, and

we have finished the proof for these types.
Now we consider the remaining types.

Case 2. % is of type Aa, az3.

We will show that in this case, 2 € S(G). To do this
we use Lemma 2.1.4 to show that UOQ is not factorial. Then
8}

02 is not regular, and by Lemma 2.1.2 O2 is not regular, so

L€ S(G).

For & of type Aa’ o 23, choose D as prescribed in
Chapter one. We construct Z = Z(D,W) = Spec UA(D,w). There
is a point z_ € 1L such that 0 =Y . Let T be a

0 Z,2 L
maximal torus of B. Then T acts on Z, and 2 is fixed by
this action. Then we can apply Lemma 2.1.4. The set of

eigenvectors of T in k(Z) = Uk(G) is simply P. So suppose
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F € OZ . n P cannot be expressed as a non-trivial product of
H

o
non-units in 0Z s n P; then by the Lemma F is in fact
b
0
extremal in OZ - We will construct such an F with the
b
o]

additional property that the ideal generated by F is not
prime. (We say simply that F is not prime.) So we will have

shown that 0Z . is not factorial.
H
)
It remains to construct F. Recall that W = {wl,...,wa}
with w, = V(Di,ri), riE er(-l,lg_for i=1l,...,0, and
i
D= Pl-{Dl,...,Da}. Denote r, = a; with pi,qj_EZ, a; >0 and
P; and a relatively prime.
-q -P
Let P = £ g I

Dy D,

Claim : FeO NP and is not prime in 0 2
—_— Z,zO Z,zO

Proof of claim : Obviously Fe YA(D) nP. We will show that

wi(F) >0 for i=1,...,0.

wy(F) = -qqry+p; =03
wz(F) . ql-plrz = ql(l-rlrz) 203

Wy (F)

qQ,+P; = ql(1+rl)> 0 for i=3,...,a0a.

Therefore, FéﬁUA(D,w)c:OZ - and the first part of the
’"o
claim is proven.

Also note that F is a regular function on Z(D,W), which
is a normal variety. The zero set of F includes one or more
of the codimension one subvarieties of Z(D,W) corresponding
to the valuations Wi i=1,...,a. Bach of these subvarieties
contains Zge If az24 or if ryT, < 1, this zero set contains
at least two of these subvarieties and is therefore not
irreducible. Therefore if o 24, if Ty «'lly OF [sf T, < 1, then

F is not prime in OZ
’ZO



-40~-

Sk

Now if a = 3 and ry =1, = 1, then F (fD fD )
1 72
2

2
>0, consider F - (£, fg y7he g, )00 (€, £ £p )3

'3
2 73 1 73 1 72 73
it is easy to check that each of the above terms belong to

- -1, .
02,20’ but F does not divide (fD szfns) ; so F 1s not
prime. If r, <0, consider F = (£ )"lo(f £.)-1,

3 D1 D1 D3 DZ D,

again, each of the terms above belong to OZ , but F does
» %0
not divide either of the terms on the right in Oz g So F

’

is not prime. This finishes the proof of the claim.

1

Now we will show that F cannot be expressed as a non-

trivial product of non-units in OZ - Suppose F = g8,

b
o)
with gl,gze OZ,ZOE P. We will show that either g; or g, 1S
a unit in OZ We write gy = (fD )mh with h € P such that
o 1
the order of f in h is zero. Since h€ P, it is homogeneous
Dy

(that is, {cf | cek*,D€ D(G)} is identified with the set of
linear polynomlals in two variables; h being a product of
elements of this type, it is a homogeneous polynomial of

two variables). We set d equal to the degree of h.

Now wq (g ) =2 0 means mrl-dz 0, and wl(gz)z 0 means that
mrl—d< 0, since Wy (F) = 0. So mr, = d. I claim that the
degrees of g and g, must be negative. To show this, choose
v = v( ,-1) : this valuation dominates & and for hE€P,
v(h) = -degh; so g4 and g, being in O n P, their degrees
must be negative. This tells us thatdegF'<deg g < 0, that
is qq*pq = ~M- d=0; since mr, = d, it follows that
q1(1+r1) 2—m(1+r1) 20, im€m; qp = -m=0. Also since mr, €Z,
we know that q divides m, so either m = 0or-q;; this
means that either deg g = 0 or deg g, = deg F. If deg g~ 0

then glEZOG so it is a unit in 0Z 2 : on the other hand,
o
if deg g, = deg F, then deg g, = 0 and therefore g, is a

unit in 0
’7,
o}



-41-

So by Lemma 2.1.4,Fis extremal in OZ . So we conclude

»20
that UOK = OZ . is not factorial. Therefore 2 € S(G).
b
o)

This completes the proof of the proposition.

Remark : For this case of T = {e}, one can replace Lemma 2.1.2
by a stronger Lemma which says that in fact A(D,W) =

kfU] ® UA(D,w) when D = Pl. Then, for example if X is a

smooth embedding, we know how to cover X with

charts each isomorphic to Ai : for all smooth localities we

can choose D and W such that Z(D,w) = Spec UA(D,W) is a

torus embedding; it is smooth and of dimension two, so then
Z(D,w) = Mi, and by the new Lemma, Spec A(D W) = Ai. Because
this result is stronger and the method of proof is interesting,

we will state and prove this Lemma.

As usual, we have G = SL(2,k), B a Borel subgroup of G
and U the unipotent radical of B. We fix another Borel
subgroup B~ opposed to B. Suppose G' 1s an open B-stable
subvariety of BB~ = UB . Then G' = UxV where V is an open
affine subvariety of B . Therefore k[G'] & k[UJ @ k[V].
This is a U-isomorphism, so k[V] = Uk[G‘]; that is
K[G'] & k[U] @ UK[G'I.

Lemma 2.2.2. Suppose G' is an open subvariety of BB , and

suppose wl,...;wae V(G). Let A = k[G']rWOw r1...(10w . Then
1 o
the isomorphism k[G'] = k[U]@lth'] induces an isomorphism

A = k[ul @ VA.

To apply this lemma to our case, fix D, = Bg € BD(G)
where B~ = g-lB g. Given & a locality of a one-dimensional

orbit such that 02 is a localization of A(D,W), we have
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D= Pl. Then, by possibly changing the base point, we can

assume that D ¢ D. Now we are in the situation of the Lemma :
A(D) is the coordlnate ring of a B-stable subvariety of
BB = G-{Do} and the Lemma shows that A(D,w) =k[U] ® A(D W)

Proof of Lemma.

We have
BB = U x B
U U
G' = U xV
So
K[G'] = k{U] @ Yk[G']
U U
U
A k[U] & “A .

We will show that the isomorphism above induces an isomor-

phism of A onto k[UJ & YA.

Suppose that f € k[G'] and the image of f under the

m
isomorphism above in shortest form is ) g @ f with
i=1
giek[U], fiEUk[G‘], i=1,...,m. Let we€ V(G). Once we
prove that w(f) = inf w(fi), the lemma is proven.
i

First note that it is enough to show for f € k[BB ] that
w(f) = inf w(fi). For if f' € k[GJ1, then there exists hEIUk[G']

such that £ = f'h€ k[BB 1. If the image of f is z g, @£,
i=1
then the image of f' is Ig.® (fi/h); also w(f') = inf w(fi/h)
1
if and only if w(f) = ipf w(fi).
i

We fix some notation :

1 a
U={(0 l) | a€k} ,
- X 0 *
B—{(y x..l)lxek,yek},
a a
~ 11 212 ) .
and G = {( )| 8118y, 81,85 = 1}

d21 #4322
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Note that k[BB 1 = k(6y, = kla

’a 9
22 21?722’ a

The isomorphism k[U x B"15 k[BB ] is defined by

-1
X — a5,
yE=2 dgy
a
and a — al&
22

So the isomorphism k[UIl @ Uk[G']:l k[G'] is defined by

a
a®l — _12

&7

and 18 £f — £ .

Let f€ k[BB 1. Then there exists N € Nsuch that ang

. . . a1
is a polynomial function of 2,128,525 and 3z,

G2 fi(a153p)

N g .t
=0 22

The image of a,, £ in k[UJ @ Ukre'a is

alef. (a
1
(o]

e~

. 21°822)
1

. New _ s _
We will show that w(a22 f) = 12f w(fi(a21,a22)), then

since azzNEEUk[G‘], the lemma will be proven.

We know that any we€ V(G) is induced by the germ of a

formally divergent curve, A(t) (see § 4 [9 1). Also we can

tP 0 1 0
@ (o o) )
tq t P < u 1

with p,q€Z and u€k [ 9 1. Let i>\ be the morphism

choose
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comult. 1@ X
i. ¢ k[G] —— k[G] @ k[G] —— kI[G] ® k((t))— kI[GI((t)).

Then for g€ k[G], w(g) is the order of t in ix(g). We have

3 = = P .
1A(a22) (18 A)(a21® aj.* a22® azz) a22® t )
3 = = -p .
1>\(a12) (1®>\)(a11®a12+a129a22) a12®t :
i = N p
1A(a21) (1@ A)(a219 a;qt a22® a21) a21® th o+
q -P
a22® (tt+ut 7).
N+n N+n . .
Now a,, f € k[G], so w(a22 f) is the order of t in
. N+n
1>\(a22 f). Now
io(a, Ny % i (a..3)+1i. (a7 YE (2, ,2,,))
AST22 j=o ANT12 AST22 jrT21°722

v i g 4P n-J
= Z (al2 ®t )1X(a22 fj(a21,a22)).

Let us denote by ordt the order of t. For each j, note that
. n-j

1>\(a22 fj(a21,a22)) does not depend on ay,- Therefore,

we have

N+n

X = e : n-j
ordt(lx(a22 £)) 1?f { pJ+ordt(1>\(a22 fj(aZl,azg)}.

. = —p
Now 1X(a22) a22® t ¥, so

. N+n X 3 .
ord, (i, (a,, ")) = 1pf{-pJ-p(n-J)-+0rdt(fj(a21,a22))}

J
= -pn*-1?f{ordtfj(a21,a12)}.

N+ .
22 Bey = -pn*—1pf{w(fj(321,alz))}, and w(azz) = -p,

J
N.. _ . .
22 f) = 1?f{w(fj(a21,a22))}. This finishes the proof

So w(a

so w(a

of the lemma.
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§ 3. Case of T = Z/2Z.

Let T be the group of two elements. Then as a subgroup
of G, T = 1(5 ) 3. so 6/T = PGL,(K). In this
section we calculate the smooth embeddings of PGLZ(k).

Recall that P0(G/T) = Pp(G) = P', and the diagram of

V(G/T) is the same as the diagram of V(G). However the two
cases are not the same : when T = {e} then f; = g, but for
I = Z/2Z we have fD = g%. This changes the calculation of
S(G/T).

Proposition 2.3.1. Let 2¢€ L?(G/F), where T = Z/2Z. Then
2 € S(G/T) if and only if it is one of the following types

o1
2n+1
p -
—X and either
i

la) Type Al with ry , n€ N* 3

1b) Type A2 with r,

(i) q;a,-p;p, = 1 and 2z divides (a-p;) (a,-P,)
or (ii) q,491~P1P, = 2 and 2 divides both q1-Pq and q,"Pys

1lc) Type A3 with T,

]
=

]
H

]
—

2) Type AB with T, — and either

(1) |pya,-p,a | = 1 and 2 divides (q;-p;)(a,-Py)
or (ii) |P1q2-p2qll = 2 and 2 divides both q;-p; and q,-P,;

3) Type B, with r, = -1;

1

. _ 1 +
4) Type B_ with L v ne€ N ;
5) Type C.

(As in section 2, if we write r = %, we choose q >0 and

P,q€Z and relatively prime.)



-46-

Proof.

The proof of this proposition follows the same scheme

as the proof of Proposition 2.2.1.

If % is of Type C then 2 € S(G/T), and if & is of Type
Bo’ then %€ S(G/T). (Lemma 2.1.1).

In all other cases, % is the locality of an orbit of
dimension one. As in section two, we first consider the

case where we can apply the theory of torus embeddings.

Case 1 : & is of type AB, B_, B_, A1 or AZ’

In each of these cases, one can choose D such that
Z2(D,Ww = Spec UA(D,w) is a torus embedding by Lemma 2.1.2.
Then by Lemma 2.1.6, 2 € S(G/T) if and only if Z(0,W) is

smooth.

The ring of regular functions of the torus for which
2(D,0) is an embedding is A(P'-{D;,D,}) =

-1 -1 X
k[fDl,fDl,nggDz,(nggDz) 1. So if we call the torus S,
m m
= 1 2
then X(S) {(fp ) (nggDZ) lml,m2 Z}. Now for each type

we must find the primitive vectors &, and e, in X, (S) which
generate the sector of 1linear functionals which are '
positive on X(S)f\UA(D,w) and then calculate the determinant,
det(el ez). Then 2 € S(G/T) if and only if det(e1 e2)=1]”

go)

- - - N 1 - .—‘l
Type AB. Let Wy v(Dl,rl) and W, V(Dl,rz) with ry qi’
i =1,2. We choose D = Pl-{Dl,Dz} for an arbitrary D,=D,.

™ 2o T2 m)
Now wi(fDl (nggDz) )= (ml-FTT)ri-ir . This is positive
if and only if (2pi)m1+-(pi-qi)m22 0. So
U ™ m

X(S) n A(D,W) = {fD1 (nggDz) |2pim1+ (pi—qi)m22.0,1= 1,2},
Let e = (2p1,p1-q1) and e} = (sz,pz-qz). Then e} and e}

generate the set of linear functionals positive on
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X(S)r1UA(D,w), but they may not be primitive. Now

det(ei eé) = Z(qlpz—qul). Note that ei is primitive if
and only if 2 does not divide q;-P; for i=1,2. Now it 1is
easy to see that the condition given in the proposition

is given such that the determinant of the primitive vectors

is %1.

_ P,
Type B . Let Wy = V(Dl,rl), -1x< r1==aI< 1. We ;hoose _
D=IP1-{D } for an arbitrary D, = D.. Then for £ 1(g g )
2 2 1 Dl D1 D2
to be 1in UA(D,w), it must be in A(D), and we must have
M )
w, (f (g €1 ) ) 20. So
1 D1 D1 D2
U ™ i)
X(S)n A(D,w) = {f (gn &n ) | 2m,+m, >0 and
D1 D1 D2 1 72

2p1m14-(p1—q1)m22 0}. Let ei = (2,1) and eé= (Zpl,pl-ql).

Then det(ei eé)= -qu. Now ei is a primitive vector. So

for Z(D,W) to be smooth, we must have that eé is not

primitive; therefore we must have that 2 divides Py-dq-

Also it is necessary that aq = 1. Since -4 S Py <qps this

means that ry= -1. So 2€ 8(G/Tr) if and only if ry = -1.
. !
Type B_. Let Wy = V(Dl,rl) with 0 < r, = — <1, We must
choose D =IP1-{D1}. Pick an arbitrary DZE D. Then
U m1 m,
X(S) n A(@,wWw) = {f (g En ) : m, >0 and
D1 D1 D2 2

2pymy + (py-ap)m, 2 0}

Let ei = (0,1) and eé = (Zpl,pl—ql). Then det (ei eé)= —2p1.

Now ei is primitive, so Z(D,Ww) is smooth if and only if 2
divides Pi-dq and P = 1. (Remember that in this case pg
is always positive). That is, %€ S(G/T) if and only if

= ) ,11€IN+.

Ty 7 Zn+1
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Type Al' This type is identical to the type B_ except that

we must choose -1 < Ty = al < 0. So we find that Z(D,W) is
i
smooth if and only if P = -1 and 2 divides P,-4;- That is,
: : _ -1 +
2 € 8(G/T) if and omnly if T S5 0 P €N .
: Pj
IXEE_AZ' Let Wy = V(Dl,rl) and W, = V(Dz,rz) with ri==a; ,
ij=1,2. Then we must choose p=p! - (D ,D,}. Now
- - 1°72
U » i 2 =
X(8) n"A(D,w) = {£;, “(gp 8y ) ° | 2pymy*(p-aimy 20
1 1 72
- - 1 = -
and 2q2m1+(p2 qz)mzz.O}. Let e (2p1,p1 ql) and
eé = (—Zqz,pz-qz). Then det(ei eé) = -Z(qlqz-plpz). Now it

is easy to see that 2 € S(G/T) if and only if one of the

conditions given in the proposition is satisfied.
So the proposition is proven for these types.

Now we must check the proposition for the case when

is of type Aa’ a=3. We have W = {wl,...,wu} with
1

W, = V(Di,ri) and D =P —{Dl"°"Da}‘ We can suppose
i i=2,...,0.
Case 2. & is of type Aa, axz4 or of type A3 with Ty < s
This case is very similar to the case 2 of Proposition 2.2.1.
To show %€ S(G/T) by Lemma 2.1.2 it is enough to show UO

2
is not regular. We show UO is not factorial, so not regular.

Again we construct an F which we show is extremal by
Lemma 2.1.4 but which is not prime. Recall that for the
case when I' = {e}, to show that the F we constructed was
not prime for o = 3 when Ty =T, = 1, we had to use an extra
argument. This argument does not work for T = Z/2Z. Other
than that, the proof is quite similar to the case T = {e}.
P1 .

Let r, = a; with pl,qléiz, a; >0, and Py and a; rela-

tively prime.
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(1) Suppose Py * 4y is even.

Then I define F := 1 . Clearly Fe P nac).
9 P
g g
Dy ™Dy
~q T +P
Also we have wl(F) = 121 E B 0
97P17, _ 9
w,(F) = ———= = — (1-17,)20
and > 0 if ry <1
4;*P; 4
o101 _ Tt .
Wi(P) == =7 (1+r1)> 0. i=3,...,0.

So we see that FEIUA(D,w). Let Z = Z(D,w) = SpchA(D,w), and
let z be the point of Z such that OZ,z = UOQ. Now F is not
prime 1n OZ,zo’ but F is extremal in OZ,zO' The proof is
identical to the proof for T = {e}. So in this case OZ,zO
cannot be factorial.

(ii) Suppose Py *d; is odd.

Then F = 1 —— is not in k(6)T. So let F' = E%. Now

Z,2
’“o

show it is irreducible in OZ . Suppose not. Then by
b
0
Lemma 2.1.4, it can be factored in P(F)n OZ - Suppose
’
0

we have F'E€ P(F)n 0 and F' is not prime. We will now

np(M)
o}

F' = g,8, with gl,gze 0Z . . We must show that either
9

g, or g, is a unit. Suppose g, = (gD )m h where the order

1
of gy in h is 0. Since h€ P(F), h is homogeneous. Let
1
d = degh. The degree of gy is 1. Since gleﬁk(G)F, the

1
degree of g, must be even; therefore m+d is even. Using

the same method as in the case T' = {el}l, we find mr, = d
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and deg F' < deg g < 0. That 1is 2(q1+p1)2 -m-d 20, or
2q12 -mx 0. Also a, divides m. If m = 0, then d = 0 and

* *
g, € OZ,ZO' If m = -2q;, then q, € OZ , » Finally, if m = -qp,

b
)
then d = “Py> and m+d is odd, which is impossible. So F' is
extremal but not prime. This contradicts the hypothesis that
OZ = Y0 is factorial.
324 L

So the proposition is proven in this case.

Now we have one case left to do.

Case 3. 2 1is of Type A3 with Ty =T, =T = Il =
We will show that % € S(G/T) by proving that UOQ is
regular : we will find two elements of mRIWUA(D,w) that
generate mlfWUA(D,W).
LetX=g;g,Y=ELg—,Z=g—Lg—.Notethat
D7D, Dy7Dg 27 O
since g = g, +ag for some a € k*, we have that Z=Y + aX.
D D D
1 2 3
Claim : X and Y generate the ideal m_nN UA(D, ) %

L

Proof : Clearly, (X,Y)c:meIUA(D,w). By Lemma 2.1.3 we only
need to show that any element of mQrWUA(D,w)rWP(F) is in
the ideal (X,Y). Suppose Fe€m rlUA(D,W)n P(F).

'3
Then
m1 m2 m, lg_l
F=cg g g (g ta.g, ) c€k*, a.€k”
D1 D2 D3 i=1 D2 i D3 * %
i=1, ,d
with
2w1(F) = ml-mz-ms-dz 0,
ZWZ(F) = mz-ml-m3-d2 0,
ZWS(F) = ms—ml—mz-dz 0,
and m,+m,+m_+d is even.

1772 5



-51~

m1+d m2+d m3+d d
Then F = cg g g [T (Y+a.X)
2 D, Dg i=1 1
o B d
= x*y" z¥ [T (Y+a;X)
i=1
m,-m,-m,-d
where o = 5 % 2 >0 and o € Z,
m,-m,-m,-d
B = 2 % 3 >0 and B E€Z,
m,-m,-m,-d
and y = 2 ; 5 >0 andy€zZ.
Oy, B &
So F = cX*YP(y+axX)Y T[] (Y+aiX)€ (X,Y), and the claim is
i=1
proven.

Therefore, in this case %€ S(G/T). This finishes the

proof of the proposition.

§ 4. Other examples.

In this section, we will give a few examples of how
to use the methods described in section one to calculate
S(G/T) for T other than {el or Z/2Z.

Fix T a finite subgroup of order greater than or equal
to three. Denote by T the intersection of T with the center
of G, and set n = [T:T] (so if the order |T| of T is odd,
then n = |T|, and if |T| is even, then n = |T[/2).

Let D€ Pl/rsuch that b(D) is minimal. Note that since
b(D) < 0, there is no type B_ or Bo locality with Vl of the
form {v(D,r)}. Let QEL?(G/F) be either of type B_ with

Vz = {v(D,r)}, -1<r<b(D) or of type AB with
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V2 = {V(D,rl),v(D,rz)}, -ls<r, < rZS'b(D); then one can use
Lemma 2.1.5 together with the results of sections 2 and 3
to check when %€ S(G/T). To explain how to do this we fix

some notation.

Consider the set D = {Dl,...,Dn}c:BD(G/F) of irreducible
components of the inverse image of D by the projection
G/T - G/T. For each i = 1,...,n we choose'EiE L?(G/f) as
follows. Let Ti be of the same type as %, and such that

the elements of VE are the elements of V(G/T) = V(G/{e})
i

of the form V(Di,s) which are extensions of elements of VQ

Proposition 2.4.1. Suppose %€ L?(G/T) is of type B_ with
U£= {v(D,r)} or of type AB with V2= {v(D,rl), V(D,rz)}
and b(D) is minimal. Then %€ S(G/T) if and only if
?L'iES(G/T) for any i.

Proof.

This proposition is a consequence of Lemma 2.1.5.
Choose Dc:BD(G/P) cofinite such that Oz is a localization
of A(D,V&), and choose Vv € F%; then v is of the form v(D,s),
-1<s<b(D). We denote by V. the extension in V(G/T) of
the form V(D S, ) with -1« s, < 1, i=1,...,n. Let 7 be
the inverse image of 0 in the projection nﬂ'»:m /T and V

be the set of extensions of elements of V2 in V(G/T).

Since A(D,Vl) is a Krull ring, its integral closure
in k(G/T) is also a Krull ring, and its essential valuations

are all the extensions of essential valuations of

A(D,V,) [213; so it is A(D,V o)+ The localization of ADV )
in the ideal mv f\A(ﬁ v ) is the local ring of 2 € P (G/F),
i

in fact 2' = Tl, to see this note that OT is the localiza-

tion of A(ﬁ V~ ) in the ideal m~ f1A(D V~ ) and
i 1
A(ﬁ,Vl)c:A(D,Vz )c:OQ,. Now one can show that OT is a
i i i
localization of the integral closure of 02, so we can apply

Lemma 2.1.5. This finishes the proof of the proposition.
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Now T is either {e} or Z/2Z; so we know S(G/T) from

sections 2 and 3.

As before let T be a finite subgroup of G of order

greater than or equal to 3.

Proposition 2.4.2. Suppose L€ L?(G/F) is of type Aa such
that V, = {V(Di’ri)}i=1,...
i=1,...,0. Then 2¢ S(G/T).

a with b(Di) minimal for

One can prove this proposition using methods similar
to the ones used for type Aa, a23 in sections 2 and 3.
This is quite long, and one must study many cases separately.
So we will instead give another proof, which uses the
theorem of purity of Zariski : if Y is a normal variety and
X is smooth and Y- X is a finite morphism, then the set of

branch points is either empty or purely of codimension one[1l4].

Proof of the Proposition.

Let X be the minimal embedding with locality &; that
is X is an embedding with a+2 orbits : a orbits of type C,
one orbit of type Aa, and the open orbit. The diagram of X

is of the form
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We will find an embedding Y of G/T such that there is
a finite morphism Y - X which is branched just over the
orbit with locality %. First we define Y. We use the notation
given in the proof of the previous proposition. Let
Te€ L (G/T) be the locality of Type A . with V~==7£. Then let
Y be the minimal embedding with locality 7. The diagram of
Y is of the form

We will show that there is a finite morphism Y - X. Now
Spec A(D V) is an open subset of X and Spec A(ﬁz,vz) is an
open subset of Y. The inclusion A(DQ,V ) = A(5 v ) c:A(5
induces a finite morphism Spec A(ﬁl,vg) - Spec A(DQ,VQ)

Now X = G« Spec A(D,,V,) and Y = G - Spec A("ﬁz,Vz). The
finite morphism above extends to a finite G-morphism Y- X.
It is clear that this morphism is unramified over the open
orbit. Also, for any orbit T of type C of X there are n
orbits of type C of Y which lie over T (this 1is because we
chose b(Di) minimal for i = 1,...,0), so the morphism is
unramified over T. Over the orbit of type Au is the orbit
of type A of Y. So the set of branch points of Y-X 1s
the orbit of type A,; the orbit is of codimension two, so by
the theorem of purity of Zariski, X is not smooth. We know
X is smooth at every point not in the orbit with locality
2, so L€ S(G/T).
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Now suppose I' is cyclic of order greater than or equal
to 3. Choose D1 and D2 of Pl/I‘such that b(Dl) = b(Dz) = 1.
That is, D1 and D2 are the two fixed elements of Pl/F.
Suppose %€ L?(G/F) is of type Al’AZ’AB’B+ or B_ with each
element of W of the form V(Di,r), i =1 or 2. Then we can
apply the theory of torus embeddings. The calculations are
very similar to those in section 3. In this case, the ring
of regular functions on the torus is.A(Pl/F —{Dl,Dz}) =
klfy ,fBl,gD gy »(8p 8p )-1], so the characters of the

1 1 =2 1 72
m m

1 2
torus are {fD1 (nggDZ) .ml,mZEZ}.

To give one example, we will prove the following proposition.

Proposition 2.4.3. Suppose T is cyclic of order greater than

or equal to 3, and L€ L?(G/F) is of the type B, with
W= {V(Dl,rl)} and b(D1)= 1. Then 2 € S(G/T).

Proof.

We choose D = Pl/F-{DZ} for an arbitrary D, =#D,. Now
_h

1 dq

Z(D,w) is a smooth torus embedding. The set of characters

of the torus which are in UA(DJU) is

-l<r <1. By Lemma 2.1.6, 2€ S(G/T) if and only if

m m
1 2
{fD1 (nggDz) | |F|m1+m22 0 and [T[pymy*+(py-q;)m,2 0}.
Then let e = ({t], 1) and e} = (Itlpy,py-ay) . Then
det(ei eé) = —|F|q1. For Z(D,W) to be smooth, it would be

el

necessary that qQ = 1 and thatTT%'€ ZZ

. That is |T| divides
P-4~ If qQ = 1, then LT 0 or -1, so Py = 0 or -1.

Since |T| =23, |I| does not divide 1 or 2. So Z(D,W) is never
smooth, and therefore %€ S(G/T).
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CHAPTER III: SMOOTH COMPLETE B/r—EMBEDDINGS:

A_GEOMETRIC APPROACH

In the previous two chapters, we study SL(2,k)/r-embeddings in a
combinatorical way. We describe an embedding by giving a set of data which
defines the local rings of the orbits. A disadvantage to this approach is
that one does not see the geometry of the varieties obtained.

In this chapter we will start developping a more geometric way of looking
at some of these embeddings. The idea is as follows. Consider the case where
r < sL(2,k) is a finite cyclic group. Choose B a Borel subgroup of SL(2,k)
containing I'. Suppose we have a B/r—-embedding B/r <—— X; then one can
construct a G/r-embedding G/r <—— G*BX. The new variety G*BX is a fibre

1 with fibre isomorphic to X. Now X is a rational surface,

bundle over G/B & P
so if it is smooth and complete, we can study X using the theory of smooth
projective rational surfaces. In this chapter we study these B/r-embeddings.
In the first section, we show that any such embedding is obtained from blowing
up an embedding where X is a minimal model as a variety, and we review the
minimal rational models. In the following section we calculate the actions of
B on these minimal models which yield embeddings of B/r. In the following
chapter, we will see which of the SL(2,k)/r-embeddings are obtained in this
way.

Remember that a B/r-embedding is a variety X with a regular action of B

such that there is an open orbit B-isomorphic to B/r. For this chapter, we

change the definition of two embeddings being equivalent as follows. The

e —— TSN

embeddings X, and X, are equivalent if the are B-isomorphic. This is

different from the previous definition in that we do not take into account a

base point. The reason for this difference is that now we are interested in
the geometry of the orbits in X as a whole whereas in the previous chapters we

first studied the embedding locally and then pieced orbits together. For this



-57-

process one must make sure to keep the same base point for gluing the pieces
together. It is not problematic to make this difference, because once an
embedding is given, changing the base point amounts to "translating" all the

local rings U6 of the orbits to Ues for some seB.

¢]1. Minimal embeddings: definitions and preliminary results

As usual, B denotes a Borel subgroup of SL(2,k). Let r be a finite
subgroup of B (so I is cyclic).

Given a smooth complete B/r-embedding X with fixed point P, The action of
B on X induces an action on X, the variety obtained by blowing up P in X,
giving ¥ the structure of a B/r-embedding. We say that X is a minimal
B/r-embedding if it in not the blow up of another smooth B/r-embedding. If X
is a minimal model as a variety (that is, if the underlying variety of X is
pot the blow up of another smooth variety), then clearly X is a minimal
embedding. We will now prove the converse.

Proposition 3.1.1. Suppose X is a smooth complete surface on which a

connected linear algebraic group H acts regularly. Suppose also that X
contains an irreducible curve C with self-intersection n<0. Then C is stable
by H.

Proof.

Let seH. Then since H is connected and the action is regular, sC is
linearly equivalent to C [6]. Also sC is irreducible, so if sC#C, then sCNC
is a finite number of points. Thus the intersection number of C and sC is
non-negative; but it must be the self-intersection number of C, which is

strictly negative. This is impossible, so gC=C for all seH.
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Corollary 3.1.2. Suppose X is a minimal B/r-embedding. Then S is a minimal
model as a variety; that is, X is a rational minimal model.
Proof.

If X is not a minimal model as a variety, then it contains an irreducible
curve C isomorphic to Pl with self-intersection -1. If we apply the
proposition to the case H=B, we see that C is stable by B. So the surface
obtained by blowing down C is also a B/r-embedding, and X is not a minimal

embedding. Also X must be rational because B is rational.

We recall the description of the set of minimal models of rational
surfaces (see for example (1], (4] or [11]). For any integer n30, define
F .= P(UP,O UP,(n)). Then F is a ruled surface over Pl. For example,

Fo= Plx Pl and ¥, is the blow up of Pz in one point. The set of minimal
rational models is given by Pz and Fn’ n#l. The Fn are called Hirzebruch
surfaces.

Let us review some elementary properties of the surfaces Fn' As
mentioned above, Fn is a ruled surface over Pl; that is, it is a Pl—fibre
bundle over Pl. We restrict to the case n)l. Then there is exactly one
ruling of Fn’ i.e. there is exactly one morphism ﬂntfn———q Pl with fibres
isomorphic to Pl. The bundle untrn———» Pl has a unique section En with
self-intersection -n, and En is the only irreducible curve of rn with negative
gself-intersection. The fibres of w  are all linearly equivalent, and they are
the only irreducible curves with self-intersection 0. So any automorphism of
F fixes En and permutes the fibres. Now Fn-En is the total space of the
vector bundle 0(n) over Pl. All the sections of 0(n) are linearly equivalent
(as divisors of Fn) with self-intersection n. Also we have an exact sequence

1 k% 1oL, 0(n)) —— Aut rn_L_. PGL(2)— s 1
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where ¢ is the restriction to the automorphism of Enz Pl, and k* acts on

HO(PI,U(n)) by multiplication.

We define an action of Aut Fn on HO(PI,U(n)) as follows. If PeAut Fn

and s is a global section of 0(n), then Ps is the section given by (Ps)(x) =

1

Y(s(?_lx)), where xePl and the action of ?_1 on P is given by its action on

Eapl. Thus rs) (P = p(s®P)).
Lemma 3.1.3. Let PeAut Fn’ n)1; then the action of ¥ on the vector space

HO(PIU(n)) given above is an affine transformation.

Proof.
-1

Given xePl the restriction of ¥ to the fibre P_l(ﬂn x) gives an

1('un_lx)-—z——-. ﬂn_lx = k; this transformation is affine.

isomorphism k & r
Suppose s, and s, are elements of HO(PI,U(n)); let s=ts,+(1-t)s,, tek.

Then for any X e Pl we have (Ps)x= ?(s(P_lx))= P(ts,(P_lx)+(1—t)s,(r_1x))=

t?(s,(P—lx))+(1—t)?(s,(r—1x))= t(es,)x + (1-t)(rs,)x. This proves the lemma.

o

Corollary 3.1.4. For n>l, there is a homomorphism

Aut Fn————q Aff(Ho(Pl,U(n)) given by P . - (8 s PS).

To describe a B/r-embedding with underlying variety X , we must give a
homomorphism B —— Aut X such that X has an open orbit B-isomorphic to B/T.
Two such homomorphisms give rise to equivalent embeddings (remember that we do
not fix the base point!) if and only if they are conjugate.

In the following section we will use the information given here to study

the possible B/r-embeddings into #2, P'x P!, and F_, m1.
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$2. The minimal B/r-embeddings

Proposition 3.2.1. Let r be a finite subgroup of B of order c. Then, up to
equivalence, the number of B/r-embeddings into

(i) P is 3 if c=4 and otherwise 2;

(ii) rlx Pl is 2 if c=2 and otherwise 1;

(iii) Fn, n)>l is n+4 if c=2(n+l) and otherwise n+3.
The irreducible components of the complement to the open orbit are always
isomorphic to Pl, and they intersect transversely except in one case where c=4
and B/r embeds into P2. In this case there is exactly one fixed point. Also,
if c is even, the for one case where c=2(n+l), n)0, there is exactly one fixed

point. All the other cases have at least two fixed points.

(We include the case F, even though it is not minimal.)

To be more precise, we indicate the form of the complement Z to the open
orbit in each case. Also to distinguish the embedding where Z has the same
form, we indicate how the action of B differs on Z. Let U be the unipotent
radical of B and T be a maximal torus. Then B is TxU, and the characters of B
are the characters of T. We denote the character group of B by {an: nez}.

For embeddings into Pz,we find for each ', there are two embeddings where
Z={L, U L,}, and L, and L, are lines in Pz. The unipotent subgroup U acts

2—c

non-trivially on L,, and B acts by the character ¢2+c or a on L,. (So

there are two fixed points except in an embedding for the case c=2, where L,

is a line of fixed points.)
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If c=4, we also find an embedding where Z={L, u C} and C is a smooth conic

whch is tangent to L, at the unique fixed point.
L,

For embeddings into Plx rl, Z is always the union of three curves. Let
pizrlx Pl-—-a Pl, iz1,2 be the two projections. Then for each r there is an
embedding where 2={F, U F,‘U F,} and F,, F,’ are fibres of p, and F, is a

fibre of p,. There are two fixed points.

on

Also, if c=2, we find another embedding into Plx Pl where Z={F, U F, U C} and

C is a section of p, and p, which intersects F, and F, transversely in the

unique fixed point.

For embeddings into rn. nd1, again Z is is always the union of three

curves. Let un:rn—_——_4 Pl be the unique ruling of rn’ and let En be the
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irreducible curve of Fn with self-intesection -n. For each I we find n+l
cases where Z={En UFUF’) and F and F’ are fibres of LI The torus T acts

p+2 and on F’ by the character a—c(n—p)+2’ p=0,...,n.

on F by the character a®
(There are either 3 or 4 fixed points, or, if T acts trivially on F’, then F’

is a curve of fixed points.)

There are also two other embeddings in Fn for each r where Z={F U Enu D} and F
is a fibre as before and D is a section of LSS which does not intersect En.
The group B acts on F by the character d2ntc. (There are two fixed points

except in one of the embeddings in the case where c=2n, in which case F

consists of fixed points.)

4

F
_+ E
n

Also if c=2(n+l), there is one more embedding where Z = {En UFuUC} and C

is a section which intersects En and F transversely in the unique fixed point.

F
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This embedding is obtained as follows. Consider the embedding into Fn+1 of
the previous type where the fibre F consists of fixed points. Blow up a point
of F which is not on En+1 or D and contract the strict transform of F. This

gives the required embedding into Fn.

Proof of the Proposition.

Recall that to give an embedding of B/r into a variety X, we must find a
homomorphism ¥:B — Aut X such that under the induced action of B on X,
there is an open orbit isomorphic to B/r. Two such embeddings are equivalent
(under the equivalence considered in this chapter) if and only if the

homomorphisms are conjugate.
1

a B X A
Set B = { 0 a_l | aek and pek}, U = { 0 1 | pek} and
a 0 X
T:{[o d—l] Idek }.
1

We consider separately the embeddings into Pz, Plx P and Fn’ n>1l.

Embeddings into P2:

If B acts on P2, it has a fixed point d since PZ is complete and B is
solvable. Also B acts on the linear system S={lines of Pz passing through
d}. Since we have S & Pl, B fixes one such line, which we call L.

CASE 1. U acts trivially on L.

Then there is another point d‘el fixed by B. By choosing an appropriate

1 B

basis, we can assume that for [ 0 1 ] e U we have

1 p 1 00
"[o 1]= 0 1 p]ePGL(3)
0 0 1

and P(B) is upper triangular. By a change of basis we can also assume that

¢(T) is diagonal. Then for ¥ to be a homomorphism, it is necessary that

a B a" 0 0
Pl o a-l =10 a p_l ¢ PGL(3), mez.
a 0 a



For m=-lic, this gives en embedding of B/r with |r|=c. In this basis,
L = {(20:2,:0)] ziek} , and B acts on L by the character aZtc. There is
another fixed line {(Ozz,:z,)l ziek} on which U acts non-trivially. This

gives two B/r-embeddings mentioned earlier for Pz.

CASE 2. U acts non—-trivially on L.

(i) U acts trivially on the linear system S.
Then B fixes another line L’ passing through d, and the complement to the open
orbit is 2= LU L‘. So U acts trivially on L; indeed, let D be a line of
Pz not passing through d and let ueU, u#e; then ud N D is a point fixed by u;
it therefore must belong to Z, but it is not in L; thus it is in L’. So by
exchanging L and L', we are in Case 1.

(ii) U acts non—-trivially on the linear system S.

Then fix ueU, u#e. We can choose a basis such that P(u) is in Jordan normal

form [

and P(T) is diagonal. There is just one possibility:

o O

1 0
1 1 ] . Now by a change of basis we can assume
0 1

1 B 1 28 p°
P[ 0 1 ] =10 1 8 ¢ PGL(3)
0 0 1

az 2a8 pz

« p o
"[o a—l] -lo 1 als|epar(a.

0 0 o«b?

(So P is obtained from the irreducible representation of SL(2) of dimension
3.) This homomorphism gives rise to a B/r-embedding for c=4. The complement
to the open orbit consists of two components: L = {(24:2,:0)} and

C = {(zotz,:z,)l zoz,—z% = 0}, and there is exactly one fixed point: (1:0:0).

Embeddings into P'x P':

The two projections Plx Pl —_— Pl give the two different rulings of
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Plx Pl. Any automorphism of Plx Pl either fixed the two rulings or exchanges
them. In other words, Aut(Plx Pl) = (PGL(2)x PGL(2)) w z/22. Since B is
connected, the image of ¥(B) «—— Aut(Plx Pl) is connected; thus we consider
homomorphisms P: B —— PGL(2)x PGL(2). Up to conjugation, the only

homomorphisms of B to PGL(2) are

(a B ) fa g ]
-1 ——— _ e PGL(2)
L0 o« ) o ol
(a B ) a0
or 0 -1 — ¢ PGL(2), m= 0,1,2,....
\ « / 0 ]_

To obtain an embedding, U cannot act trivially on Plx Pl. So the

possib ilities are

a B a B « 0 1 1
P[ 0 a_l] ={ [ 0 _1], ] } ¢ Aut(P x P°), m=1,2,3,...
a 0 1

a B a B a B 1 1
or Pl o a—l ={ i 1l -1 } e Aut(Px P7).
a 0 «

In the first case, we get an embedding of B/r with c=m; the second induces a
B/r-embedding with c¢=2, and the complement to the open orbit consists of three
curves isomorphic to Pl all intersecting transversely in the unique fixed

point. So for c=2, we find two embeddings, and for c#2 we find one.

Embeddings into F _, n>l:

Remember from section 1 that we can consider Fn as the union of En and
the total space of the line bundle UP,(n). Suppose we have a homomorphism
¥Y:B —— Aut Fn which gives rise to a B/r-embedding. Since Aut Fn fixes

En, we know that B fixes En' We consider three cases.

CASE 1. U acts trivially on E .

We will find n+l inequivalent embeddings of this type for each r.

In this case, consider the action of T on En' It cannot act trivially
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(because then each B-orbit would be conteined in a fibre of un:rn-qu) and
has therefore exactly two fixed points, x and y. By possibly exchanging x and
y, we can assume that T acts by a character am, m>0 on Ena Pl (i.e. for

zeEn—{x,y}, we choose x= lim tz and y= lim tz, teT).
t-0 tao

The fibres Fx and Fy of x and y, respectively, are stable by B. Let Z be
the complement of the open orbit in Fn. Then we have En u Fx u Fy c 2.

Since we know that Fo- {En u Fx U Fy} & k x k* « B/r, and since k x k*
contains no proper open subvariety isomorphic to itself, we must have 2
= En v Fx U Fy.

Now by Corollary 3.1.4, we have T «<— B — Aut Fn —_— Aff(Ho(Pl,U(n)).
Since T is reductive, T must fix a section D of 0(n).

We also have that U acts on the vector space HO(PI,U(n)). Consider the
orbit UD. First note that UD & k (we could not have UD = D, because then D
would be in the complement of the open orbit). Now let ueU, u#e; then I
claim that ub N D ¢ {x’,y’}, where x’= Fx NnDand y' = Fy Nn D. To see this,
note that since U acts trivially on En’ it stabilized the fibres of LS Thus
if z belongs to uD N D, then u belongs to the isotropy group of z, and

therefore z must be in Z. The intersection number uD-D is n; 8o

n

ecduU Ap, where Ap is the set of sections D’ of 0(n) such that D n D’
p=0

= px’ + (n-p)y’ counted with multiplicity. Now D U Ap is isomorphic to k,

p=0,...,n; so UD =D U Ap for some p=0,...,n. We call p the index of the

embedding.
2 D .
T - -—=¥-
“uo
" %
En
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Lemma 3.2.2. Up to equivalence, there is at most one B/r-embedding into Fn of
a given index p, with p=0,...,n.
Proof.

Suppose we have two B/r-embeddings into Fn with the same index p. Fix
ueU, uge. For the first (resp. second) action denote by X,y (resp. X,y) the
fixed points in En and D (resp. U) the section fixed by T. Set Du:= uD
(resp. ﬁu= ubd).

By conjugating by an automorphism of rn which permutes the fibres, we can
assume x=x and y=y. Then by conjugating by an automorphism which fixes the
fibres and translates the sections, we can assume D=B. Finally, since the two
embeddings have the same index, by conjugating by an automorphism that fixes
the fibres and which is a homothety centered at D, we can assume Duzﬁu.

Now I claim that for a fixed r, there is at most one possible action of B
on Fn which induces a B/r-embedding with the quadruple {x,y,D,Du}. Indeed U
acts by translation on each of the fibres of 0(n); so D and Du determine how U
must act. Now check the action of T on D, which is the same as its action on
En' Choose zeD in the open orbit. The order of the isotropy group Bz is c,
the order of r, and Bzc T. So T acts on D by a character atc. Since we chose
x and y such that the action of T on En is given by a positive character, we
must have that T acts on D by the character of. Now let v be an element of
the open orbit and teT. Choose uel such that (t_lut)v =v’ ¢ D. Then tv

1tv'. So this fixes the action of T on the open orbit, which is dense in

:u_
Fn. So the claim is true, and this finishes the proof of the lemma.
1]

By this lemma, we have at most n+l inequivalent embeddings for each G/r

of this type. Now we must show that these actually exist.

Lemma 3.2.3. Let n be a positive integer and p be an integer such that 0<p¢n.

Then for each finite r ¢ B, there exists a B/r-embedding into Fn with index p.
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Proof.

Remember that if one contracts the section En of Fn’ one obtains a
surface Xn (nonsingular if and only if n=1) contained in Pn+l. In fact Xn is
the closure of the affine cone over the n—tuple embedding Pl——» Fl. Giving an
embedding of B/ is equivalent to giving an embedding of B/r into Xn which
fixes the "center" of the cone (if n>1, this condition is always satisfied,
because this point is singular).

For each p with 0¢p<n, we will exhibit an action of B on Xn which
induces a B/r-embedding with index p. To do this we give a linear action of B
on kn+2 which induces an action of B on Pn+1 stabilizing Xn and its "center."

B acts on k2 in the usual way:

a B s ) . (astpt
[ 0 a—%][ t ] [ a_lt ] '

Also for iez, we denote by (k,al) the variety k with the action of B by the

a A z = aiz.
(o ]

n .

e k,aP e e (k,a®), p=0,...,n.
J=0
J#p

i
character a:

Consider the B—-module

We have B —— PGL(n+2)= Aut Pn+1 by

..acp+2 a0p+1p 0 . 0

EE AL e

cn
&

«a g
We change the basis so that the image of [ 0 a_l] is
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L cn

n 1

Let Xn= {(z4:s :sn_lt:...:tn)| Zo,8,tek} < Pn+ . Clearly Xn and the center
of the cone (1:0:...:0) are fixed by this action. In xn the two "fibres" Fx
={(24:2,:0:...:0)} and Fy= {(z°:0:...:0:zn)} are stable. It is easy to
check that the isotropy group of (0:1:...:1) is the finite subgroup of T of
order c. So this induces an embedding of B/I into Xn which by blowing up the

center gives a B/r-embedding into Fn where U acts trivially on En.

Let D = {(0::5“:5“_1 :...:tn)} c xn. Then D is a "section" stable by T.
Fix u=[ é i ] eU. Then uD = {(sn—ptp:sn:sn_lt:...:tn)} cX. We check the
multiplicity of the intersection of D and uD at x‘=(0:1:0:...:0). The local

ring of x’ in Xn is k[zo,t](t 2g)" and the local equation of D (resp. uD) is
1<0
zo,=0 (resp. z,= tp); thus this multiplicity is p, and the index of the

embedding is p. This finishes the proof of the lemma.

Remark. By checking the action of the torus on the fibres of the actions
found in Lemma 3.2.3, we find for this case the result mentioned in the

remarks following the statement of the proposition.
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CASE 2. U acts non-trivially on_gu and B fixes a section D of O(n).

We will find two embeddings of this type for each rI.

In this case, U has one fixed point x on En. Then T must also fix x, and
it also fixes another point yeEn. As before, we call Z the complement to the
open orbit. Then we have Z = En ubu Fx , where Fx is the fibre of nn
containing x. Now look at the action of T on Fy, the fibre of y. Choose
zZeé Fy in the open orbit. Then the order of the isotropy group Bz is ¢, the
order of r, and Bzc T. So T acts on Fy by the character atc. For each such

embedding, call this character the signature of the embedding.
D

:
i
|
I
F IF
|
l
|
|
|

Lemma 3.2.4. Up to equivalence, there is at most one B/r-embedding into Fn
with a given signature o = atc.
Proof.

Suppose we had two actions of B on rn which yield two such embeddings.
For the first (resp. second) action, let ¥ (resp.¥) :BxEn_-_4 En be the
induced action on En and D (resp. V) be the section of 0(n) fixed by B.

Up to conjugacy there is only one action of B on Enz Pl for which U acts
non—-trivially. So we can assume ¥ = ¥. By conjugating by an automorphism of
rn which fixes the fibres and translates the sections, we can assume p=0.

Now I claim there is at most one action of B on Fn which yields a
B/r-embedding with the triple {v,D,0}. To see this, consider first the action
of U on Fn. Now x is the fixed point of En, and Fx is its fibre. Let S be

the set of sections of 0(n) which are not D and intersect D with multiplicity
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n at the fixed point x‘=Fan. This set is isomorphic to k* and is stable by
B, so U acts trivially on S. Since the action of U on D’‘eS is identical to
its action on En’ the action of U on Fn is determined by ¥ and D. As for the
action of T, remember that T stabilizes the set S. The action on this set is
equivalent to its action on Fy, the fibre of the point of En fixed by T and
not fixed by U. This action is given by o. So {v,D,0} determines the action

of T on Fn. This proves the claim.

From this lemma, we see that for each I, there is at most two
B/r-embeddings of this type. Now we must show that these embeddings actually

exist.

Lemma 3.2.5. Let r be a finite subgroup of B of order c and o be atc. Then
there exists a B/r-embedding into Fn with signature o.
Proof.
We use the same notation as in Lemma 3.2.3. Consider the B—module
(k,a_ntc)esn(kz)
where Sn(kz) is the vector space of homogeneous polynomials of degree n over k
with two variables, and the action of B on Sn(kz) is induced from the action

given in Lemma 3.2.3 on k2. We have B —— PGL(n+2) by

Lot R
0
a B
b p_l [ . pn[o d—l]
0 a .
| 0 |

where P, is the (n+l)-dimensional irreducible matrix representation of SL(2,k)

corresponding to the basis {[ 5 ]xlyn_l}._ of Sn(kz).
i i=0,...,n
As in Lemma 3.2.3, let Xn= {(zozsn:sn—lt:.‘.:tn)l Zo,8,tek} ¢ Pn+1.

Then Xn and its center (1:0:...:0) are fixed by the action above. In xn the

*gection" {(Otsn:...:tn)} and the "fibre" {(z,:2,:0:...:0)} are stable. The
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isotropy group of (1:0:...:0:1) is the finite subgroup of T of order c. So
this action gives an embedding of B/r into Xn which by blowing up the center
gives an embedding into Fn where U acts non-trivially on En and B fixes a
section.

The "fibre" {(20:0:...:0:zn)} is stable by T and not by U. Also T acts
on this fibre by the character atc, so the signature of the embedding is atc

This proves the lemma.

Remark. The group B acts on the fixed fibre of the B/r-embedding with
signature atc by the character a2n¥c. In particular, for each n, there is
exactly on embedding of this type for c=2n where B acts trivially on the fixed

fibre. We will use this remark for the following case.

CASE 3. U acts non-trivially on E“ and B does not fix any section of O(n).

For each n, we find one such case where c=2(n+l).

As in the previous case, B fixes one element ern. So Z, the complement
to the open orbit contains En and Fx’ the fibre of x. Now F.~ {En U Fx} is
isomorphic to k x k; so Z must have another component. Suppose
ze 2 - {EnUFx}; then C = Bz is contained in Z. Clearly C is a section of
ﬂn:rn__* Pl, and by hypothesis it in not a section of 0(n); thus it is a
section of L which intersects En at the point x. We have Z = EnU FxU c,
since Fn_{EdJ F;J C} & k x k*.

The intersection number CoFx is 1 since C is a section and Fx is a fibre,
and C-En=p is strictly positive. Now blow up x and then contract the strict
transform of Fx; we obtain an embedding into Fn+1' Let C, be the strict
transform of C in Fn+1; then the intersection number CI-En+1 is p-1. Also,
this new embedding has at least two fixed points: one on En+1 and the other

the image of the strict transform of Fx in Fn+1' By doing this process p-l
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times, we get an embedding into rn+p_1 with Z = En+p—lu Fp—l u Cp_1 , where

. . . : ) 1 .
Fp—l is a fibre and Cp is a section of "n+p—1'rn+p—1__* P° with
cp—l'En+p—l=1°
7 -1
p-1
& En+p—1
l"no—— —_ Fn+1 — — S = — Fn+p_1

Now blow up x once more and blow down the strict transform of Fp—l' We obtain

an embedding where the complement of the open orbit has the form

on

Now F, has three fixed points, so B acts trivially on F,. Blow down ?p—l; we
obtain an embedding into Fn+p as in Case 2, where B acts trivially on the
fixed fibre. As we have seen in the remark of Case 2, this happens in exactly
one case with c=2(n+p). Thus for c=2(n+p) we find there is at most one

embedding into Fn+p—1 of Case 3 with C 1. Now we will show that

p—l'En+p-1=
p=1. This is done as follows. Suppose p>l. Then by the process of blowing
up and down described above, we obtain an embedding into rn+p_1 with at least
two fixed points. By exhibiting the embedding into Fn+p—1 with Cp—l'En+p—1

=], we will see that it has a unique fixed point. Thus the Case 3 is finished

by the following lemma.
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Lemma 3.2.6. Let I be a finite subgroup of B of order c. If c=2(n+l), there
exists a B/r-embedding into rn of Case 3 with C-En=1, and this embedding has a
unique fixed point.
Proof.

We use the notation of Lemmas 3.2.3 and 3.2.5.

n+l

Consider the B-module S (kz). We have B —— PGL(n+2) by

(5 &) — sG]

where Pr+l is the (n+2)-dimensional irreducible representation of SL(2,k).

Consider the closure of the orbit of xn+1+yn+1 by B using the basis

n+l) i n+l-i n,_n- 1 oD
{[ i ]x y }i=0,... o+l This is exactly X = {(zqo:8 8 “ti... t )|
Zo,8,tek}. The center (1:0:...: :10) is fixed by this action. The two stable

curves in X are the "fibre" {(z,:2,:0:...:0)} and {(s n+1 s"t ...:tn+1)}, the

image of the (n+l)-uple embedding of Pl in Pn+1. It is easy to see that the
isotropy group of (1:0:...:0:1) is the finite subgroup of T of order c; so
this action gives a B/r-embedding into Xn which induces an embedding into Fn'
Since the only fixed point on Xn is the center and there is only one fixed
"fibre", we have exactly one fixed point for the action on Fn' It is easily
checked that the intersection number of En with the other stable section in L
is 1.

o
This finishes Case 3. Thus we know all the embeddings into Pz, Plx Pl and

Fn’ n)l. The remarks at the end of the proposition are easily verified by

checking each embedding. This finishes the proof of the proposition.

Remarks.
(1) Note that - as to be expected - all the embedding into F, are

obtained by blowing up the embeddings into Pz at fixed points.
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(2) The "exceptional embeddings", that is, those with only one fixed
point, are of special intemst, because this phenomenon does not occur for

smooth complete embeddings of tori.
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CHAPTER IV: THE RELATIONSHIP BETWEEN G/r-EMBEDDINGS
AND B/r—-EMBEDDINGS

As in the previous chapters, G denotes the group SL(2,k) and B denotes a
fixed Borel subgroup of G. Let I be a finite (cyclic) subgroup of B.

In this chapter, we consider the classification of normal G/r-embeddings
given in Chapter I and deduce a similar classification for the normal
B/r-embeddings. (It is possible to calculate directly this classification
using methods similar to those of Chapter I, but since we already did the work
for SL(2), it is simpler to use what we already know.) Then we study the
smooth B/r-embeddings and calculate how the minimal embeddings found in
Chapter III fit into our classification. This gives us information about many
of the smooth G/r-embeddings. For the cases of r={e} and {te}, this will be

discussed further in section 7.

% 1. Classification of normal B/r—embeddings
from G/r-embeddings

The aim of this section is to describe a relation between B/r-embeddings
and G/r-embeddings.

Given an embedding X of B/, we construct an embedding of G/r as
follows. Consider the action of B on GxX by b-(s,x)=(sb_1,bx) for beB,
seG and xeX. We denote the quotient of GxX by this action as G*BX. This
new variety has a natural action of G, and the open equivariant immersion of
B/r into X induces an open equivariant immersion of G/r into G*BX. Thus,
G*BX is a G/r-embedding.

There is a natural morphism n:G*BX —» G/B induced by the projection of
GxB onto G. In fact G*BX is a locally trivial fibre bundle over G/B with

fibre B-isomorphic to X; this is because the fibre bundle G/r — G/B is
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locally trivial.
Proposition 4.1.1. Let ¢ be the map from the set of B/r-embeddings to the
set of G/r-embeddings given by ¢(X)=G*Bx. Then
(1) ¢ is injective;
(ii) X is normal (resp. smooth) if and only if ¢(X) is normal (resp.
smooth).
Proof.
(1) Suppose G*Bx,= G*BXz (as G/r-embeddings). The inclusion of G/r

into GX¥ Xi induces an inclusion of B/r into G*Bxi, i=1,2. Now Xi is the

B
closure of B/r in G*Bxi, i=1,2, so X,=X,. (Note that it is essential that
we take into consideration the base point for this argument.)

(ii) This follows directly from the facts that n:G*BX — G/B is

locally trivial and that G/B is smooth.

Now we would like to find the image of ¢. We are really only interested
in the normal embeddings, so now let us restrict ¢ to the normal embeddings of
B/r.

Proposition 4.1.2. Let X’ be a normal embedding of G/r. Then X’ is in the

image of ¢ if and only if no G-orbit in X’ is completely contained in the
closure of B/r in X’.

To prove this proposition we need the following lemma:

Lemma 4.1.3. Let X’ be a normal G/r-embedding. Then the closure of B/r in
X’ intersects every orbit of X’.

To prove the lemma we show that G.B/F = X’. Clearly G-B/T contains
the open orbit of X’, so we need only show that it is closed. Indeed the
image of the morphism

L & G*BF7T'———» X’

(8,X) — 8X
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js G-B/T; it therefore suffices to prove that ¥ is proper. The morphism ¥
can be decomposed as follows:
G*BWF_“"_. G/B x X' Bz, x’
(8,X) +——— (sB/B,SX) —— SX.
The morphism p, is proper since G/B is complete, and ¥’ is in fact a closed

immersion. So ¥ is proper.

Proof of Proposition 4.1.2.

Let X be the closure of B/ in X’. Then X’ is in the image of ¢ if and
only if X' = ¢(X). Certainly, if this is the case, no orbit in X’ is
entirely contained in X.

On the other hand, suppose that no orbit of X' is contained in X. Let
P:G*BX — X' be the map defined by ¥(s,x) = sx, seG and xeX. Then ¥ is
birational, and by the lemma, it is surjective. We will show that ¥ is an
isomorphism. By Zariski’s Main Theorem it suffices to prove that the fibres
of P are finite (since X' is normal).

Let zeX’; now dim(P—l(z))= dim(Gz N X) + dim Gz - dim B < dim Gz +
dim Gz - dim B, since Gz n X # Gz by hypothesis. (Gz denotes the isotropy
subgroup of z.) So dim(r_l(z)) ¢ dim G - dim B -1 = 0, since B is of
codimension one in G. Therefore dim(P_l(z)) = 0; thus ¥ is an isomorphism,
and the proposition is proven.

la]

This proposition is very useful, because, given the information from
Proposition 1.3.1 it is very easy to tell if an orbit is in the closure of
B/r. The reason is that B/r, being of codimension one, is an element of
BD(G/I'); i.e. it is a B-stable irreducible divisor of G/r. So a locality
ceLT(G/r) is the locality of an orbit contained in B/T if and only if

B/Tr e Do. We check the list of De’s for ceLT(G/r), and we find



Corollary 4.1.4. Suppose X’ is a normal embedding of G/r; then X' is in

the image of ¢ if and only if each of its localities are of the following
types:

Type Aa with DJ=B/r for some j, j=l,...,a;

Type B, with D,#B/r;

Type B_ with D,=B/r;

Type AB;
or Type C.

(Note that X’ cannot have a fixed point, because it would be entirely in the

closure of B/r. So we find no localities of type B° in the list.)

Thus we obtain a classification for the localities of orbits of normal

B/r-embeddings.

2. The diagrams of normal B/I'-embeddings

Given a normal B/r-embedding X we will associate to it a diagram similar
to the diagram of G*BX. We do this as follows. First draw the diagram of
G*BX. Next label B/rerl/r by "x". By Corollary 4.1.4, we know which

diagrams ar possible. For example, for rI={e}

is allowed,but
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or

or or

or are not.

Now there is no ambiguity between the localities of type B+ and B_ (and there
are none of type Bo), so we can omit the signs "+" and "-" in the diagram.
There is one more change we will make. We replace the "center" of the diagrem
by a small circle, which we darken if X contains a subvariety with locality

v( ,-1) (i.e. if it has an infinite number of type B+ orbits). For example

has 4 orbits
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whereas has an infinite
number of orbits.

$3. The relationship between local rings of G/r-embeddings
and local rings of B/r-embeddings

Let B be a Borel subgroup of G opposed to B, and let U be its
unipotent radical. Then
BB=UBaUxB-E2,B
induces the inclusion k([B] ¢—— k(B B]. This in turn induces an inclusion
k(B)e—— k(B B)=k(G); so we consider k(B)<k(G).
Suppose Y is an orbit of a B—embedding X with local ring 06. Denote the
local ring of Y'= G*BY in X'= G*BX by 06,. Then Oc = k(B) N Ue,. To see

this, note that u:Gk,X —— G/B is locally trivial, and Uc is the local

B
ring of the intersection of a fibre with Y’ in that fibre.

In the diagram of a normal B/r-embedding, the set of "points" represents
¥Y(B/r) = {discrete normalized B-stable valuations of k(B) over k}; that
is, there is a one-to-one correspondence between ¥(G/r) and ¥(B/r) given
by Uv, — Uv,n k(B). For any locality ¢’e LT(G/r) and v'e Y(G/r), we
have v’e Fc, if and only if Uv,n k(B) =Uv dominates Uc,n k(B) = 06. This
means that the diagrem of a normal B/r-embedding represents the embedding in
much the same way that we have for G/r-embeddings. We denote by L?(B/r) the
set of localities of non-open orbits of normael B/r-embeddings. For

¢c L(B/r), we can define ¥, and F, as for G/r-embeddings. Then the

darkened part of the diagram for ¢ is Fe , and also wve¢ Vc if and only if
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the corresponding v’ of ¥ (G/r) is in Vc" where Ue= Oe,n k(B).
For the B/r-embeddings, the orbits with localities of type C are

one-dimensional, and those with localities of type B+, B_or Aa are fixed

points.
Example.
et B={[% P |: aek=, pekl.
0 a

Define an action of B on Pz by

-1

[ @ P_l ] (20:2,:2,) = (azZo+pz,i@ "2,:2,).
0 «

Then P2 has 5 orbits: one open orbit isomorphic to B, 2 orbits of

dimension one, and 2 fixed points. We pick a base point in the open orbit,

for example (0:1:1). This defines an embedding of B. We will show that the

diagram of the embedding is

To see this, first we consider the orbits of dimension one:
C,={(a:0:1)| aek=} and C,={(a:1:0)| aek}. Each orbit has a valuation ring,

and it is obtained from a formally divergent curve A(t) ([9].
11
Let aA,(t)= [ 0 t ]. By our choice of the base point,the image under
2 ¢l
the injective morphism B c—s P° is (0:1:1). So A,(t) — [0 : ](0:1:1)

= (1:t:1). Now lim A,(t)=(1:0:1) which belongs to C,. So the valuation
t-0

ring of T, in Pz is given by v, with v,(a)=-1 and v,(s)=0. We extend
v, to a valuation in ¥(G). Now G= SL(2,k) with coordinates aij , 1=1,2,

j=1,2. Thus v,(a,,)=v,(a,,)=-1, and v,(8,,)=v,(8,,)=0; so v,=v(D,0),
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2

where fD=a,,, so DeB. In other words, the valuation ring of C, in P” is

represented by

-1 -1
Now let A, (t)= [3 ! ] Then A,(t)—s [5 -1 ](0:1:1)=(1:1:t).

So lim A,(t)=(1:1:0), which belongs to C,. Thus the valuation ring of C, in

PZ is v, with v,(a)= 1 and v,(8)= -1. If we extend v, to a valuation in

¥(G), we find v,= v(B,1); so the valuation ring of T, in P2 is represented

by

Now let us look at the two fixed points: P,=(0:0:1) and P,=(1:0:0).
Set ci equal to the locality of Pi’ i=1,2; we see that Vcl={v,}, since
P, is in the closure of C,, and Vez={v,,v,}. since P, is in the closures of
both C, and C,. So ¢, must be a locality of type B , and ¢, must be of type

A,. The diagram of this embedding is indeed the one shown earlier.



$4. Morphisms of embeddings of G/r and B/r

If X is a normal embedding of G/r (resp. B/r), we define L(X)c L?(G/r)

(resp. L?(B/r)) to be the set of localities of orbits of X.

Proposition 4.4.1. Let r<G be a finite subgroup, and let X and X’ be two
normal embeddings of G/r. Then the identity map on G/r extends to a
(necessarily unique) G-morphism P:X —— X’ if and only if for each ¢eeL(X)
there exists ¢’eL(X’) such that Fec F&' and if ¢ is of type B, then so is
¢’, and if ¢ is of type B+ (resp. B_) then &’ is either of the same type or of

type B,. If P exists, then it is proper if and only if U Fe = J Fe.
teL(X) telL(X")

Proof.

We use the notation from Chapter I.

It is clear that if P exists, it is unique. Also the statement about the
properness is proven in [9], section 6.4.

Now suppose the condition given in the proposition is verified. Then it
is easily checked that BDcc BDG,. This means we can choose D,D’ ¢ Pl/r such
that Ue (resp. Ue,) is a local ring of A(D,Ve) (resp. A(D',Ve,)) and D < D’.
Therefore A(D)> A(D'). Now if veVe , then either veVﬁ, or Uv dominates Ue.
This implies that we have A(D,Ve) > A(D’,Ve,). This inclusion induces a
morphism Spec A(D,Ve) ~—~—— Spec A(D',Te,), which is compatible with the
identity map on G/I'. We extend this morphism to
G-Spec A(D,Vc) —~——— G-Spec A(D',Vc,). For all ¢e L(X), these morphisms are
compatible, so they define a morphism P:X —— X‘.

Conversely, if P exists, let Y be an orbit of X with locality &. Then Uc
dominates U&. where ¢’ is the locality of ¥Y(Y). This implies first of all
that F6 c FC,. Also if DeBDG, then D > Y; thus D= ¥{D) > ¥(Y), which means
that DeBDc,. Thus we must have the requirement given in the proposition.
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Corollary 4.4.2. Let rcB be a finite subgroup, and let X and X' be two normal
embeddings of B/r. Then the identity map on B/I extends to a (necessarily
unique) B-morphism ¥P:X —— X’ if and only if for each eeL(X) there exists
¢‘eL(X’) such that Fech,. If ¥ exists, then it is proper if and only if

UF= U F,.
eeL(X)®  eeL(X')

Proof.
This morphism P exists if and only if there is a morphism
G*BX —_— G*BX' which extends the identity map of G/r.
a
(This corollary can also be proven directly by showing that Fo c F&' if and

only if Ue dominates Uc,.)

Given a normal B/r-embedding X, we define the skeleton of X , denoted
Sk(X), to be the set of valuations ve¥(B/r) such that v is that locality of an
irreducible subvariety of dimension one in X.

Now suppose X is a smooth B/r-embedding with fixed point P. Denote by ¥
the variety obtained by blowing up P in X. Then X is smooth, and the action
of B on X induces an action on X giving X the structure of a B/I'—embedding.

We want to describe the diagram of X given that of X. We know that:

(i) U Fc = 4 Fe since ¥ —— X is proper;
eeL(X) eeL(X)

(ii) if v is the valuation of the exceptional divisor, then vet (B/r) and
v dominates P in X;
(iii) Sk(X) = Sk(X) U {v} (which with (i) implies that for each tel(X)
there is an ¢’eL(¥) whose facette is contained in the facette of ¢&);

and (iv) L(X) < S(B/r) since X is smooth.

By the following corollary, these four properties destermine the diagram of ¥.
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Corollary 4.4.3. Suppose X is a smooth B/r-embedding with fixed point P;

then the blow up of X at P is the only smooth embedding X such that

LJ F, = L) F, and sk(¥)=Sk(X)u{v} for some ve¥(B/r) which dominates P
eeL(X)” eeL(X)
in X.
Proof

Denote the blow up of P in X by X; by the remarks above it satisfies the
given requirements. Now suppose Yo is another such embedding. By Corollary
4.4.2 we have

X

|

yo f-.x

and P_l(P) is a curve in X,. By the universal property of blowing up for
smooth surfaces, there exists ¥: ¥;—— ¥ such that ¥ factors through ¥. By

Corollary 4.4.2 again, ¥ must be an isomorphism.

25. Blowing up smooth embeddings of d te

In this section, we will give explicitly the diagrams obtained by blowing
up the different types of orbits for r={e} and r={ze}.
B—embeddings:

Let X be a smooth B-embedding with fixed point P. From section 4
together with the classification of smooth localities in section 2.2, we can
give explicitly the diagram for X knowing the diagram for X.. For example,

suppose the locality ¢ of P is of type AB with Ve= {v(D,r,),v(D,r,)}

P.

where r.= ai , i=1,2; then since the locality is smooth, we know that
i

|re-ry|=(2,9;)" (in other words, r, and r, are neighbors in a Farey

sequence). The locality of the exceptional divisor must belong to Fc' So

L(X) = (L(X)-{e})u{v,¢,,¢,}, where ve F,, ¢,,¢,¢ S(B) each of type AB. If
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v=v(D,s),then V& = {v(D,r,),v(D,s)} and Vc = {v(D,s),v(D,r;)}. The only
1 2

way ¢, and ¢, can be smooth is if s = glégl. Similarly, if the locality
i 2

is another type, the diagram of X is completely determined. We give now a

complete list of how to blow up each type of smooth fixed point.

Type AB.

blows up to

blows up to

blows up to
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blows up to

blows up to

blows up to




blows up to

blows up to

This gives us important information about the geometric structure of

B—embeddings.

Example We start with the example given in section 3:

represents an embedding isomorphic to Pz.

Now we know if we start with 92 and blow up two distinct points and then
blow down the strict transform of the line joining those two points, we obtain

a copy of P'x P!. Let us do this with our embedding isomorphic to rz. We



will blow up the two fixed points and then blow down the line connecting them.

First we blow up the type B+ orbit. The new diagram is given by

Now we blow up the type A, orbit. Now the diaegram is

Lastly we blow down the strict tramsform of the line connecting the original

two fixed points. The diagram is

so the embedding with this diagrem is isomorphic to P!x P!,

B/{te]l-embeddings:

We can do the same thing for the case r={te} as we did for r={e}. We
must check how to blow up each type of fixed point given in Proposition 2.3.1.

The result follows.
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blows up to

blows up to

blows up to
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blows up to

Type AB.

P:
For this case, write r.= al in lowest form such that 2 divides 9;~Py

i
and qi>0, i=1,2. Then

blows up to

Type A,.

Write r, as in type AB. Then one finds that the only smooth embeddings

of this type are those with r,=1 and q,-p,=2 or vice versa.

blows up to

(Note that if r,=0=p , then s=-1.)
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$6. The minimal B/r-embeddings

In this section we will give the diagrams for the minimal embeddings
found in Chapter III. There are two ways to do this. First one can calculate
the valuations of the one—dimensional stable subvarieties of each embedding
found in Chapter III. Then since the union of the facettes of all the orbits
must cover the whole diagram (and since there is no confusion between the type
B+ and B_ orbits), one knows the diagram of the embedding. The other method
is to use the fact that any smooth B/r-embedding can be obtained by blowing up
and down stable subvarieties of any other smooth B/r-embedding. (This is
proven in the same way as showing that a birational equivalence of smooth
surface is a composition of blow ups and blow downs.) So one can start with
one embedding whose diagram is known (such as the one given in section 3 into
P2) and by blowing up and down, we obtain all the smooth embeddings. One can
keep track of which are minimal models (as in the example in section 4 where

we find the diagram of an embedding into P'x P

The minimal embeddings of B

In Chapter III we found there are two embeddings (up to equivalence) in
Pz, one in Plx Pl, and n+3 in rn ndl. (We check Fl even though it is not a
minimal model to make sure the result is consistent.) For each of these

embeddings we give the diagram.. For the actions of B on the minimal surfaces

we use the notation of Chapter III.

I’Z:

B ——— PGL(3)

1
a P— 1l — 0
0 «a 0

o Ao

0

B |:
-1

[ §

(The brackets indicate the class in PGL(3).)




F , ml:
n

In Chapter III, we actually described the embeddings of B in Xn, the
variety obtained by blowing down the irreducible curve En of negative

self-intersection. So here we give (i) the B-module isomorphic to kn+2

which
induces a B—action on ch Pn+1 as given in Chapter III,and (ii) the embedding
in rn obtained by blowing up the "center" of xn. We mark the valuation of En

with e small diamond.
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Case 1

n R
kzo(k,apﬂ)o e (k,a) :

J=0

J#p

if p=n;

a
<10
b

if p= n-1; if p<n-1.
Case 2.

(k,a 1) o sP(K2):

k,a ™ 1) o sPk%): A+l 1

where
a = 1
prI
_ -1
b= n—p-1
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Note that for Pz and l’lx Pl we always have two fixed points; for Case 1

of rn we have three fixed points if p=n or p = 0 # n-2, a curve of fixed
points (a fibre of rn--4 Pl ) if p = n-2, end otherwise four fixed points,

and for Case 2 we have two fixed points.

The minimal embeddings of B/{iel

Now there are two embeddings in Pz, two in Plx l’l, and n+3 in Fn nl. We
give the diagrams for these embeddings.
PZ:

B— PGL(3)

7
2
l'b
et
S’
o of
o 2o
2 ™o

—
]
l‘u
st
) —
of
o Ao
2 mo
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PXI’I:

B ——, PGL(2)xPGL(2) < Aut(Pix Pl)

AR R

(5 20— (s 0[5 &)

(Here the three stable curves intesect in the unique fixed point.)

F_, nl:
n
Case 1
n .
kzo(k,a2p+1)o ® (k,aZJ) ;
J=0
J#p

»
-
2N+ 1
0
where
. , o L
. .
. . b-zﬁii
Z(n-p)—1

if p=n; if p<n.

o0 o
o



(k,a ™*2) @ s"(K?):

Goa %) e sPk?): ) 1

Minimal embeddings of B rix3.

Let || = c. Here we give just the diagrams.

P ¥ *

B

-1 L
cT
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~1_1
cp+!
+0

-1 -+
c(n-p)-1

p=o, e ,n_l
] e *
1+
171 17 "
n 4
n+C

if c2n if c<{2n

and if c is even, then there is one more embedding for Fc/2—1:

7. Minimal embeddings of SL(2.k d PGL(2.k

Let X’ be a smooth embedding of G or G/{te} with orbit Y. Then there is

a G-stable open subvariety X’’ containing Y such that X'’ is of the form G*BX
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for some Borel subgroup of G , and X is a smooth embedding of B or B/{ze}.
(One must simply choose B such that Y is not in the closure of B in X‘.) We
can use this information to study local properties of X’.

For example if Y is of dimension one, we can blow up Y just as we blow up
YnX in X. This allows us to find the diagrams of minimal smooth G and G/{ze}.
We use the following proposition.
Proposition 4.7.1. Let r be the group {e} or {ze}. Suppose X, and X, are
smooth G/r—embeddings with a G-morphism ¥:X, —— X, extending the
identity map on G/r. Suppose also that Sk(X,) > Sk(X,) u {v} where v
dominates a closed orbit Y of X,. Then there exists a G-morphism
$:X, —— X, , where X, is the blow up of X, at Y, such that P factors
through ¥.
Proof.

Since blowing up is a local property, we can assume that X, is of the
form Gx_X. Here the proposition is true by the universal property of blowing

B

up on smooth surfaces.

We find
Minimal smooth SL(2,.k)—-embeddings

nizz, i=1l,...,m, m>3 n,m)2
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nyl,m>2

(G )

Brn+m

(G*BFn or G¥.F .
the choice of the Borel subgroup.)

depending on (G*Brn—l)

The only ones of these which are not of the form G*BX for some Borel

subgroup B are (i) - (v). The first one is obtained by
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G ——y M(2,k) c€— P4, where M(2,k) is the vector space of 2 x 2 matrices
over k. The action of G on P4 is induced by left multiplication, and the
embedding is the closure of the image of G in P4. So this is a projective

embedding.
Minimal smooth PGL(2,k)-embeddings

This time I only draw those that are not of the form G*BX. There are

only two types:

and

ni22, i=1l,...,m, m)2.

The first is obtained by the action of G on P(M(2,k)) & P3 (induced by left
multiplication). So this embedding is projective. The second one can show is

always nonprojective. An example of such an embedding is given in [(8].

Note also that for any smooth (P)SL(2,k)-embedding X' ,we can blow up X'

a finite number of times such that it is of the form G*Bx.
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